Search results for: Back propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 814

Search results for: Back propagation

634 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection

Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson

Abstract:

A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.

Keywords: Image processing, artificial neural network, anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
633 Segmentation and Recognition of Handwritten Numeric Chains

Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri

Abstract:

In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.

Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
632 A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Md. Fazlul Karim, Esa Al-Islam

Abstract:

This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Boundary-fitted nested grid model, finite difference method, Indonesian tsunami of 2004, Southern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
631 Current Mode Logic Circuits for 10-bit 5GHz High Speed Digital to Analog Converter

Authors: Zhenguo Vincent Chia, Sheung Yan Simon Ng, Minkyu Je

Abstract:

This paper presents CMOS Current Mode Logic (CML) circuits for a high speed Digital to Analog Converter (DAC) using standard CMOS 65nm process. The CML circuits have the propagation delay advantage over its conventional CMOS counterparts due to smaller output voltage swing and tunable bias current. The CML circuits proposed in this paper can achieve a maximum propagation delay of only 9.3ps, which can satisfy the stringent requirement for the 5 GHz high speed DAC application. Another advantage for CML circuits is its dynamic symmetry characteristic resulting in a reduction of an additional inverter. Simulation results show that the proposed CML circuits can operate from 1.08V to 1.3V with temperature ranging from -40 to +120°C.

Keywords: Conventional, Current Mode Logic, DAC, Decoder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5827
630 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
629 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)

Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat

Abstract:

An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.

Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
628 Cultivation of Thymus by In Vitro And Hydroponics Combined Method

Authors: E. Sargsyan, A. Vardanyan, L. Ghalachyan, S. Bulgadaryan

Abstract:

Our results showed that for the growth of qualitative seedling and vegetative raw material of ðó. marschallianus Willd. and T. serphyllum L. it is more profitable to use the in vitro and hydroponics combined method. In in vitro culture it is possible to do micro-propagation whole year with 98-99% rhizogenesis. 30000 micro-plants were obtained from one explant during 9 months. Hydroponic conditions provide the necessary microclimate for microplants where the survival rate without acclimatization was 93.3%. The essential oil content in hydroponic dry herb of both species in vegetative and blossom phase was 1.3% whereas in wild plants it was 1.2%, the content of extractive substances and vitamin C also exceeded wild plants. Our biochemical and radiochemical investigations indicated that the medicinal raw materials obtained from hydroponic and wild plants of Thymus species correspond to the demands of SPh XI, and the content of artificial radionuclides does not exceed the MACL.

Keywords: Hydroponics, In vitro, Micro-propagation, Thymus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
627 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications

Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze

Abstract:

In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.

Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3816
626 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
625 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
624 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
623 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob

Abstract:

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
622 Designing Back-stepping Sliding Mode Controller for a Class of 4Y Octorotor

Authors: I. Khabbazi, R. Ghasemi

Abstract:

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octortor UAV and its feature will be shown.

Keywords: Backstepping, Decoupling, Octorotor UAV, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
621 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and Hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system respectively and evaluate the system performance in terms of Quality factor. From the analysis, we could prove that the soliton pulse has the consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: Soliton, dispersion length, Soliton period, Return-tozero (RZ), Q-factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
620 Improving Multi-storey Building Sensor Network with an External Hub

Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis

Abstract:

Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.

Keywords: Wireless sensor networks, radio propagation, building monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
619 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
618 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach

Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang

Abstract:

A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.

Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
617 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
616 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
615 Ion- Acoustic Solitary Waves in a Self- Gravitating Dusty Plasma Having Two-Temperature Electrons

Authors: S.N.Paul, G.Pakira, B.Paul, B.Ghosh

Abstract:

Nonlinear propagation of ion-acoustic waves in a selfgravitating dusty plasma consisting of warm positive ions, isothermal two-temperature electrons and negatively charged dust particles having charge fluctuations is studied using the reductive perturbation method. It is shown that the nonlinear propagation of ion-acoustic waves in such plasma can be described by an uncoupled third order partial differential equation which is a modified form of the usual Korteweg-deVries (KdV) equation. From this nonlinear equation, a new type of solution for the ion-acoustic wave is obtained. The effects of two-temperature electrons, gravity and dust charge fluctuations on the ion-acoustic solitary waves are discussed with possible applications.

Keywords: Charge fluctuations, gravitating dusty plasma, Ionacoustic solitary wave, Two-temperature electrons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
614 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
613 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
612 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method

Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong

Abstract:

This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.

Keywords: Traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5331
611 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
610 Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams

Authors: Amir M. Alani, Morteza Aboutalebi, Martin J. King

Abstract:

Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.

Keywords: Fibre-Reinforced Concrete, Crack, Flexural Test, Ductility, Fibre Content, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3732
609 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: Call center agents, fatigue, skin color detection, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
608 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: Crack, FRP, shear, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
607 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
606 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
605 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004