Segmentation and Recognition of Handwritten Numeric Chains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Segmentation and Recognition of Handwritten Numeric Chains

Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri

Abstract:

In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.

Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081341

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435

References:


[1] J. Mantas, "An overview of character recognition methodologies", Pattern Recognition, Vol.19, No.6, 1986, pp.425-430.
[2] S. Mori, C. Y. Suen and K. Yamamoto, "historical review of OCR research and development", proceedings of the IEEE, Vol. 80, No. 7, 1992, pp. 1029-1058.
[3] A.L. Koerich, R. Sabourin, C.Y. Suen & A. El-Yacoubi, "A Syntax Directed Level Building Algorithm for Large Vocabulary Handwritten Word Recognition", In 4th International Workshop on Document Analysis Systems (DAS 2000) , Rio de Janeiro, Brazil, December 2000.
[4] L.S. Oliveira, R. Sabourin, F. Bortolozzi and C.Y. Suen, "A Modular System to Recognize Numerical Amounts on Brazilian Bank checks", 6th International Conference on Document Analysis and Recognition (ICDAR 2001), Seattle-USA, IEEE Computer Society Press, September 10-13, 2001. pp 389-394.
[5] A. Filatov, N. Nikitin, A. Volgunin, and P. Zelinsky, "The Address Script TM recognition system for handwritten envelopes", In International Association for Pattern Recognition Workshop on Document Analysis Systems (DAS-98), Nagano, Japan, November 4-6 1998, pp. 157-171.
[6] A. El-Yacoubi, "Modélisation Markovienne de L-'écriture Manuscrite Application `a la Reconnaissance des Adresses Postales", PhD thesis, Université de Rennes 1, Rennes, France, 1996.
[7] J. Hu, M. K. Brown and W Turin, "HMM based on-line handwriting recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, October . 1996, pp. 1039-1045.
[8] G. Kim and V. Govindaraju, "A lexicon driven approach to handwritten word recognition for real-time applications", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, April 1997, pp. 366-379.
[9] R. Buse, Z-Q Liu, and T. Caelli, "A structural and relational approach to handwritten word recognition", IEEE Trans. Systems, Man and Cybernetics, Part-B, Vol. 27, October. 1997, pp. 847-861.
[10] K. Liu, Y. S. Huang and C. Y. Suen, "Identification of fork points on the skeletons of handwritten Chinese characters," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, October. 1999, pp. 1095-1100.
[11] A. Amin, "Off-line Arabic character recognition - the state of the art
[review]", Pattern Recognition, vol. 31, No. 5, 1998, pp. 517-530.
[12] J. Cai and Z-Q Liu, "Integration of structural and statistical information for unconstrained handwritten numeral recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, March 1999, pp. 263-270.
[13] Oivid Due Trier, Anil K. Jain, & Torfinn Taxt, "Feature extraction methods for character recognition - a survey", Pattern recognition, Vol. 29, No. 4, 1996, pp.641-662.
[14] M. Bedda, M. Ramdani et S. Ouchtati., "Sur le choix d-une représentation des caractères manuscrits arabes", Proceeding du 2ème Conférence Internationale Signaux, Systèmes, et Automatique SSA2-99, Université de Blida, Algérie, 10-12 Mai 1999, pp73-84.
[15] F. Grandidier, "Un nouvel algorithme de sélection de caractéristiques application ├á la lecture automatique de l-écriture manuscrite", thèse de doctorat en génie PH.D, école de technologie supérieure, université du Quèbec Canada, Janvier 2003.
[16] N. Benahmed, "Optimisation des Réseaux de Neurones Pour la Reconnaissance des Chiffres Manuscrits Isolés, Sélection et Pondération des Primitives par Algorithmes Génétiques", Thèse pour l-obtention de la Ma├«trise en Génie de la Production Automatisée, Montréal le 01 Mars 2002.
[17] T. K. HO, J. J. Hull and S. N. Srihari. "Decision Combination in Multiple Classifiers System", IEEE Transactions on pattern Analysis and Machine Intelligence, Vol. 16, No. 1, 1994, pp. 66-75.
[18] Y. S. Huang and C. Y. Suen.: "A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals", IEEE Transactions on pattern Analysis and Machine Intelligence, Vol. 17, No. 1, 1995, pp.90-94.
[19] S. Ouchtati M. Ramdani et M. Bedda, "Un Réseau de Neurones Multicouches Pour la Reconnaissance Hors-Ligne des Caractères Manuscrits Arabes", Revue Sciences et Technologie Université de Constantine, No. 17, Juin 2002, pp. 99-105.