Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)
Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat
Abstract:
An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.
Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055497
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503References:
[1] E. Assareh, M.A. Behrang., M.R. Assari., A. Ghanbarzadeh. Application of particle swarm optimization (PSO) and genetic algorithm (GA) techniques on demand estimation of oil in Iran. Energy 2010; 35: 5223- 5229.
[2] A. Azadeh, S.F. Ghaderi, S. Sohrabkhani. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008 ; 36: 2637- 2644
[3] E. Assareh, M.A. Behrang., A. Ghanbarzadeh. Forecasting energy demand in Iran using genetic algorithm (GA) and particle swarm optimization (PSO) methods. Energy Sources, Part B: Economics, Planning, and Policy: 2009 Accepted manuscript.
[4] M.A. Behrang E. Assareh, A. Ghanbarzadeh, A. Total energy demand estimation in Iran using Bees Algorithm. Energy Sources, Part B: Economics, Planning, and Policy: 2009Accepted manuscript.
[5] M.A. Behrang., E. Assareh, M.R. Assari, M.R., and A. Ghanbarzadeh. Assessment of electricity demand in Iran's industrial sector using different intelligent optimization techniques. Applied Artificial Intelligence 2011; 25: 292-304. doi:10.1080/08839514.2011.559572
[6] A. Unler. Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 2008; 36: 1937-194
[7] O.E. Canyurt, H.K. Ozturk.. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energy Policy2008;36:2562-2569.
[8] Ermis, K., Midilli, A., Dincer, I., Rosen, M.A., 2007. Artificial neural network analysis of world green energy use. Energy Policy 35: 1731- 1743.
[9] Kennedy J, Eberhart R. Particle swarm optimization. Proc Neural Networks. Proceedings,vol.1944. IEEE International Conference on, 1995. p.1942-1948 .
[10] Engelbrecht A P. Fundamentals of computational swarm intelligence. Hoboken, N.J.: Wiley, 2005.
[11] Brits R, Engelbrecht AP, van den Bergh F. Locating multiple optima using particle swarm optimization. Applied Mathematics and Computation 2007; 189(2): 1859-1883.
[12] Liu X, Liu H, Duan H. Particle swarm optimization based on dynamic niche technology with applications to conceptual design. Advances in Engineering Software 2007; 38(10): 668-676.
[13] Pan H, Wang L, Liu B. Particle swarm optimization for function optimization in noisy environment. Applied Mathematics and Computation 2006; 181(2): 908-919.
[14] Yang IT.Performing complex project crashing analysis with aid of particle swarm optimization algorithm. International Journal of Project Management 2007; 25(6): 637-646.
[15] Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, 1998a. p.69-73.
[16] Shi Y, Eberhart R. Parameter selection in particle swarm optimization. Proceedings of the Seventh Annual Conference on Evolutionary Programming. New York, 1998b. p.591-600.
[17] M.A. Behrang, E. Assareh, A.R. Noghrehabadi, and A. Ghanbarzadeh. New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 2011; 36: 3036- 3049. doi:10.1016/j.energy.2011.02.048.
[18] Workbook, Statistical Review of World Energy. Available online at http://www.bp.com/statisticalreview. 2008.
[19] IEA. Keyword energy statistic. International Energy Agency (IEA).U.S.A. 2008.
[20] Pham DT, Koç E, Ghanbarzadeh A, Otri S. Optimisation of the Weights of Multi-Layered Perceptrons Using the Bees Algorithm. in: Proceedings of 5th International Symposium on Intelligent Manufacturing Systems, Sakarya University, Department of Industrial Engineering, , 2006. May 29-31, pp. 38-46.
[21] Pham DT, Liu X. Neural Networks for identification, prediction and control, Springer verlag, london. , 1995.
[22] Yilmaz AS, Ozer Z. Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and redial basis function neural networks. Expert Systems with Applications 36: 9767-9775, 2009.
[23] M.A. Behrang, E. Assareh, A. Ghanbarzadeh, A.R. Noghrehabadi. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 2010; 84: 1468-1480.