Search results for: Idealized influence
349 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace
Authors: Arash Sharghi, Irina Dotu
Abstract:
The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.
Keywords: Cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172348 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.
Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610347 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods
Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah A. A. Aziz, Law Teik Hua
Abstract:
The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.Keywords: Composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909346 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages
Authors: M. T. K. Aghamolki, M. K. Yusop, F. C. Oad, H. Zakikhani, Hawa. Ze Jaafar, S. Kharidah S.M., M. M. Hanafi
Abstract:
The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashemi due to its tall character. The total tillers per hill were significantly higher in Fajr. In all growing conditions, Hashemi recorded higher panicle exertion. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield decreased when heat stress was imposed during booting and flowering. However, plants had no effect on heat stress during ripening stage.
Keywords: Rice, growth, heat, stress, morphology, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358345 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials
Authors: Aleš Florian, Lenka Ševelová
Abstract:
Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.
Keywords: Concrete, FEM, pavement, sensitivity, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128344 A Study of Dose Distribution and Image Quality under an Automatic Tube Current Modulation (ATCM) System for a Toshiba Aquilion 64 CT Scanner Using a New Design of Phantom
Authors: S. Sookpeng, C. J. Martin, D. J. Gentle
Abstract:
Automatic tube current modulation (ATCM) systems are available for all CT manufacturers and are used for the majority of patients. Understanding how the systems work and their influence on patient dose and image quality is important for CT users, in order to gain the most effective use of the systems. In the present study, a new phantom was used for evaluating dose distribution and image quality under the ATCM operation for the Toshiba Aquilion 64 CT scanner using different ATCM options and a fixed mAs technique. A routine chest, abdomen and pelvis (CAP) protocol was selected for study and Gafchromic film was used to measure entrance surface dose (ESD), peripheral dose and central axis dose in the phantom. The results show the dose reductions achievable with various ATCM options, in relation with the target noise. The doses and image noise distribution were more uniform when the ATCM system was implemented compared with the fixed mAs technique. The lower limit set for the tube current will affect the modulations especially for the lower dose option. This limit prevented the tube current being reduced further and therefore the lower dose ATCM setting resembled a fixed mAs technique. Selection of a lower tube current limit is likely to reduce doses for smaller patients in scans of chest and neck regions.
Keywords: Computed Tomography (CT), Automatic Tube Current Modulation (ATCM), Automatic Exposure Control (AEC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623343 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.
Keywords: Consumer Buying, mobile operators, tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239342 A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal
Authors: Wann-Ming Wey
Abstract:
The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.
Keywords: Analytic Network Process, Built Environment, Quality Function Deployment, Urban Design, Urban Renewal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089341 Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Vijaya Haritha
Abstract:
Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.
Keywords: Porcelain insulator, polymer insulator, electric field analysis, EFA, finite element method, FEM, hydrophobicity, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698340 The Use of Palm Kernel Shell and Ash for Concrete Production
Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies
Abstract:
This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial replacement for cement and also plays an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement. In order to investigate the PC replacement potential of PK ash, three types of PK ash were produced at varying temperature (350-750C) and they were used to replace up to 50% PC. The PK shell was used to replace up to 100% coarse aggregate in order to study its aggregate replacement potential. The testing programme included material characterisation, the determination of compressive strength, tensile splitting strength and chemical durability in aggressive sulfatebearing exposure conditions. The 90 day compressive results showed a significant strength gain (up to 26.2 N/mm2). The Portland cement and conventional coarse aggregate has significantly higher influence in the strength gain compared to the equivalent PK ash and PK shell. The chemical durability results demonstrated that after a prolonged period of exposure, significant strength losses in all the concretes were observed. This phenomenon is explained, due to lower change in concrete morphology and inhibition of reaction species and the final disruption of the aggregate cement paste matrix.
Keywords: Sustainability, Concrete, mortar, Palm kernel shell, compressive strength, consistency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4612339 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling
Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh
Abstract:
Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996338 Influence of Densification Process and Material Properties on Final Briquettes Quality from Fast-Growing Willows
Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš
Abstract:
Biomass treatment through densification is very suitable and helpful technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and material variables, which are ultimately reflected on the final solid biofuels quality. The paper deals with the experimental research of the relationship between technological and material variables during densification of fast-growing trees, roundly fast-growing willows. The main goal of presented experimental research is to determine the relationship between compression pressure and raw material particle size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of particle size with interaction of compression pressure and stabilization time on the quality properties of briquettes was determined. These variables interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and from densification machines constructions point of view is very important to know about mutual interaction of these variables on final briquettes quality. The experimental findings presented here are showing the importance of mentioned variables during the densification process.
Keywords: Briquettes density, densification, particle size, compression pressure, stabilization time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743337 Application of Cite Space Software in Visual Analysis of Land Use Coupling Research Progress
Authors: Jing Zhou, Weiqun Su, Naying Luo, Min Shang, Li Wu
Abstract:
The coupling of land use system in geographical research is mainly the coupling of pattern and process, which is essentially the human-land coupling, and is an important part of the research and discussion of human-land relationship. Based on the Web of Science database, the paper titles, authors, keywords, and references from 1997-2020 related to land use coupling were used as data sources to explore the research progress of land use coupling. Cite Space bibliometric tool was used for co-occurrence analysis of the issuing country, issuing institution, co-cited author, disciplinary institution, and keywords. The results are shown as follows: (1) From 1997 to 2020, the United States, China, and Germany rank the top, with more than 250 published papers. Although China ranks second in the number of published papers on foreign literature, it has less centrality and less influence. (2) The top 10 institutions (universities) in the number of published papers (more than 300 articles) are mainly from the United States and China, and the University of Chinese Academy of Sciences has the highest output of papers. At the same time, the phenomenon of multi-institutional cooperation has increased in the field of land use coupling research. (3) From 1997 to 2020, land sensitivity research and the impact of climate change on land use patterns are the main directions of land use coupling research. However, in the past five years, scholars have mainly focused on the coupling research methods of land use and the coupling relationship between ecological and environmental factors and land use.
Keywords: Land use coupling, cite space, knowledge graph, visual analysis, research progress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383336 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.
Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583335 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.
Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911334 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures
Authors: P. G. Siddheshwar, B. N. Veena
Abstract:
Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853333 Retrospective Reconstruction of Time Series Data for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.
Keywords: Content analysis, factors, integrated waste management system, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018332 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams
Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding
Abstract:
A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005331 Power Transformers Insulation Material Investigations: Partial Discharge
Authors: Jalal M. Abdallah
Abstract:
There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.
Keywords: Transformers, insulation materials, voids, partial discharge (PD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431330 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov
Abstract:
The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ- Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.
Keywords: Copper-manganese catalysts, Preparation methods, Exhaust gases oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335329 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs
Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali
Abstract:
This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2- 5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (w/w), and storage duration (0 and 7 days) with three replications, respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705328 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.
Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163327 The “Ecological Approach” to GIS Implementation in Low Income Countries’ and the Role of Universities: Union of Municipalities of Joumeh Case Study
Authors: A. Iaaly, O. Jadayel, R. Jadayel
Abstract:
This paper explores the effectiveness of approaches used for the implementation of technology within central governments specifically Geographic Information Systems (GIS). It examines the extent to which various strategies to GIS implementation and its roll out to users within an organization is crucial for its long term assimilation. Depending on the contextual requirements, various implementation strategies exist spanning from the most revolutionary to the most evolutionary, which have an influence on the success of GIS projects and the realization of resulting business benefits within the central governments. This research compares between two strategies of GIS implementation within the Lebanese Municipalities. The first strategy is the “Technological Approach” which is focused on technology acquisition, overlaid on existing governmental frameworks. This approach gives minimal attention to capability building and the long term sustainability of the implemented program. The second strategy, referred to as the “Ecological Approach”, is naturally oriented to the function of the organization. This approach stresses on fostering the evolution of the program and on building the human capabilities. The Union of the Joumeh Municipalities will be presented as a case study under the “Ecological Approach” and the role of the GIS Center at the University of Balamand will be highlighted. Thus, this research contributes to the development of knowledge on technology implementation and the vital role of academia in the specific context of the Lebanese public sector so that this experience may pave the way for further applications.Keywords: Ecological Approach, GIS, low income countries, technological approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420326 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application
Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem
Abstract:
Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.
Keywords: Biodegradable metal, biomedical application mechanical properties, powder metallurgy, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992325 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures
Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz
Abstract:
Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.
Keywords: Direct shear, shear strength, slag, UU test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703324 Influence of Garbage Leachate on Soil Reaction,Salinity and Soil Organic Matter in East of Isfahan
Authors: Ebrahim Panahpour, Ali Gholami, Amir Hossein Davami
Abstract:
During this day a considerable amount of Leachate is produced with high amounts of organic material and nutrients needed plants. This study has done in order to scrutinize the effect of Leachate compost on the pH, EC and organic matter percentage in the form of statistical Factorial plan through randomizing block design with three main and two minor treatments and also three replications during three six month periods. Major treatments include N: Irrigation with the region-s well water as a control, I: Frequent irrigation with well water and Leachate, C: Mixing Leachate and water well (25 percent leachate + 75 percent ordinary well water) and secondary treatments, include DI: surface drip irrigation and SDI: sub surface drip irrigation. Results of this study indicated significant differences between treatments and also there were mixing up with the control treatment in the reduction of pH, increasing soluble salts and also increasing the organic matter percentage. This increase is proportional to the amount of added Leachate and in the treatment also proportional to higher mixture of frequent treatment. Therefore, since creating an acidic pH increases the ability to absorb some nutrient elements such as phosphorus, iron, zinc, copper and manganese are increased and the other hand, organic materials also improve many physical and chemical properties of soil are used in Leachate trash Consider health issues as refined in the green belts around cities as a liquid fertilizer recommended.
Keywords: Leachate, compost, drip irrigation, liquid fertilizer, soil reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280323 Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology
Authors: Anshu Manik, Kasthurirangan Gopalakrishnan, Siddhartha K. Khaitan
Abstract:
Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.
Keywords: Airport Pavement, Design of Experiments, Rutting, NAPTF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673322 Dosimetric Analysis of Intensity Modulated Radiotherapy versus 3D Conformal Radiotherapy in Adult Primary Brain Tumors: Regional Cancer Centre, India
Authors: Ravi Kiran Pothamsetty, Radha Rani Ghosh, Baby Paul Thaliath
Abstract:
Radiation therapy has undergone many advancements and evloved from 2D to 3D. Recently, with rapid pace of drug discoveries, cutting edge technology, and clinical trials has made innovative advancements in computer technology and treatment planning and upgraded to intensity modulated radiotherapy (IMRT) which delivers in homogenous dose to tumor and normal tissues. The present study was a hospital-based experience comparing two different conformal radiotherapy techniques for brain tumors. This analytical study design has been conducted at Regional Cancer Centre, India from January 2014 to January 2015. Ten patients have been selected after inclusion and exclusion criteria. All the patients were treated on Artiste Siemens Linac Accelerator. The tolerance level for maximum dose was 6.0 Gyfor lenses and 54.0 Gy for brain stem, optic chiasm and optical nerves as per RTOG criteria. Mean and standard deviation values of PTV98%, PTV 95% and PTV 2% in IMRT were 93.16±2.9, 95.01±3.4 and 103.1±1.1 respectively; for 3DCRT were 91.4±4.7, 94.17±2.6 and 102.7±0.39 respectively. PTV max dose (%) in IMRT and 3D-CRT were 104.7±0.96 and 103.9±1.0 respectively. Maximum dose to the tumor can be delivered with IMRT with acceptable toxicity limits. Variables such as expertise, location of tumor, patient condition, and TPS influence the outcome of the treatment.
Keywords: IMRT, 3D CRT, Brain, tumors, OARs, RTOG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819321 Expert Based System Design for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behaviour of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.
Keywords: Factors, fuzzy cognitive map, group decision, integrated waste management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962320 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects.
Keywords: SCC, concrete, pumice, zeolite, durability, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884