Search results for: Automatic Tube Current Modulation (ATCM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: Automatic Tube Current Modulation (ATCM)

3522 A Study of Dose Distribution and Image Quality under an Automatic Tube Current Modulation (ATCM) System for a Toshiba Aquilion 64 CT Scanner Using a New Design of Phantom

Authors: S. Sookpeng, C. J. Martin, D. J. Gentle

Abstract:

Automatic tube current modulation (ATCM) systems are available for all CT manufacturers and are used for the majority of patients. Understanding how the systems work and their influence on patient dose and image quality is important for CT users, in order to gain the most effective use of the systems. In the present study, a new phantom was used for evaluating dose distribution and image quality under the ATCM operation for the Toshiba Aquilion 64 CT scanner using different ATCM options and a fixed mAs technique. A routine chest, abdomen and pelvis (CAP) protocol was selected for study and Gafchromic film was used to measure entrance surface dose (ESD), peripheral dose and central axis dose in the phantom. The results show the dose reductions achievable with various ATCM options, in relation with the target noise. The doses and image noise distribution were more uniform when the ATCM system was implemented compared with the fixed mAs technique. The lower limit set for the tube current will affect the modulations especially for the lower dose option. This limit prevented the tube current being reduced further and therefore the lower dose ATCM setting resembled a fixed mAs technique. Selection of a lower tube current limit is likely to reduce doses for smaller patients in scans of chest and neck regions.

Keywords: Computed Tomography (CT), Automatic Tube Current Modulation (ATCM), Automatic Exposure Control (AEC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
3521 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision

Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto

Abstract:

The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.

Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
3520 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: VCSELs, optical power generation, power consumption, square wave modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
3519 CFD Study for Normal and Rifled Tube with a Convergence Check

Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih

Abstract:

Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.

Keywords: Boiler tube, Convergence Check, Normal Tube, Rifled Tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
3518 Effective Dose and Size Specific Dose Estimation with and without Tube Current Modulation for Thoracic Computed Tomography Examinations: A Phantom Study

Authors: S. Gharbi, S. Labidi, M. Mars, M. Chelli, F. Ladeb

Abstract:

The purpose of this study is to reduce radiation dose for chest CT examination by including Tube Current Modulation (TCM) to a standard CT protocol. A scan of an anthropomorphic male Alderson phantom was performed on a 128-slice scanner. The estimation of effective dose (ED) in both scans with and without mAs modulation was done via multiplication of Dose Length Product (DLP) to a conversion factor. Results were compared to those measured with a CT-Expo software. The size specific dose estimation (SSDE) values were obtained by multiplication of the volume CT dose index (CTDIvol) with a conversion size factor related to the phantom’s effective diameter. Objective assessment of image quality was performed with Signal to Noise Ratio (SNR) measurements in phantom. SPSS software was used for data analysis. Results showed including CARE Dose 4D; ED was lowered by 48.35% and 51.51% using DLP and CT-expo, respectively. In addition, ED ranges between 7.01 mSv and 6.6 mSv in case of standard protocol, while it ranges between 3.62 mSv and 3.2 mSv with TCM. Similar results are found for SSDE; dose was higher without TCM of 16.25 mGy and was lower by 48.8% including TCM. The SNR values calculated were significantly different (p=0.03<0.05). The highest one is measured on images acquired with TCM and reconstructed with Filtered back projection (FBP). In conclusion, this study proves the potential of TCM technique in SSDE and ED reduction and in conserving image quality with high diagnostic reference level for thoracic CT examinations.

Keywords: Anthropomorphic phantom, computed tomography, CT-expo, radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
3517 Application of PSK Modulation in ADS-B 1090 Extended Squitter Authentication

Authors: A-Q. Nguyen. A. Amrhar, J. Zambrano, G. Brown, O.A. Yeste-Ojeda, R. Jr. Landry

Abstract:

Since the presence of Next Generation Air Transportation System (NextGen), Automatic Dependent Surveillance-Broadcast (ADS-B) has raised specific concerns related to the privacy and security, due to its vulnerable, low-level of security and limited payload. In this paper, the authors introduce and analyze the combination of Pulse Amplitude Modulation (PAM) and Phase Shift Keying (PSK) Modulation in conventional ADS-B, forming Secure ADS-B (SADS-B) avionics. In order to demonstrate the potential of this combination, Hardware-in-the-loop (HIL) simulation was used. The tests' results show that, on the one hand, SADS-B can offer five times the payload as its predecessor. This additional payload of SADS-B can be used in various applications, therefore enhancing the ability and efficiency of the current ADS-B. On the other hand, by using the extra phase modulated bits as a digital signature to authenticate ADS-B messages, SADS-B can increase the security of ADS-B, thus ensure a more secure aviation as well. More importantly, SADS-B is compatible with the current ADS-B In and Out. Hence, no significant modifications will be needed to implement this idea. As a result, SADS-B can be considered the most promising approach to enhance the capability and security of ADS-B.

Keywords: ADS-B authentication, ADS-B security, NextGen ADS-B, PSK signature, secure ADS-B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
3516 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers

Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear

Abstract:

High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.

Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
3515 The Comparison Study of Current Control Techniques for Active Power Filters

Authors: T. Narongrit, K-L. Areerak, K-N. Areerak

Abstract:

This paper presents the comparison study of current control techniques for shunt active power filter. The hysteresis current control, the delta modulation control and the carrier-based PWM control are considered in the paper. The synchronous detection method is used to calculate the reference currents for shunt active power filter. The simulation results show that the carrier-based PWM control technique provides the minimum %THD value of the source currents compared with other comparable techniques after compensation. However, the %THD values of all three techniques can follow the IEEE std.519-1992.

Keywords: hysteresis current control, delta modulation current control, pulse width modulation control, shunt active power filter, synchronous detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
3514 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476
3513 Efficient Variable Modulation Scheme Based on Codebook in the MIMO-OFDM System

Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Because current wireless communication requires high reliability in a limited bandwidth environment, this paper proposes the variable modulation scheme based on the codebook. The variable modulation scheme adjusts transmission power using the codebook in accordance with channel state. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme. The simulation results show that the performance of proposed scheme has better reliability than the the performance of conventional scheme.

Keywords: MIMO-OFDM, variable modulation, codebook, channel state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
3512 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: Laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
3511 Novel Sinusoidal Pulse Width Modulation with Least Correlated Noise

Authors: Shiang-Hwua Yu, Han-Sheng Tseng

Abstract:

This paper presents a novel sinusoidal modulation scheme that features least correlated noise and high linearity. The modulation circuit, which is composed of a quantizer, a resonator, and a comparator, is capable of eliminating correlated modulation noise while doing modulation. The proposed modulation scheme combined with the linear quadratic optimal control is applied to a single-phase voltage source inverter and validated with the experiment results. The experiments show that the inverter supplies stable 60Hz 110V AC power with a total harmonic distortion of less than 1%, under the DC input variation from 190 V to 300 V and the output power variation from 0 to 600 W.

Keywords: Pulse width modulation, feedback dithering, linear quadratic control, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
3510 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: Graphene nanoribbon, field effect transistors, short channel effects, channel length modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
3509 A Low Cost and High Quality Duty-Cycle Modulation Scheme and Applications

Authors: B. Lonla Moffo, J. Mbihi, L. Nneme Nneme

Abstract:

In this paper, a low cost duty-cycle modulation scheme is studied in depth and compared to the standard pulse width modulation technique. Using a mix of analytical reasoning and electronics simulation tools, it is shown that under the same operating conditions, most characteristics of the proposed duty-cycle modulation scheme are better than those provided by a standard pulse width modulation technique. The simulation results obtained when testing both modulation control policies on prototyping systems, indicate that the proposed duty-cycle modulation approach, appears to be a high quality control policy in a wide variety of application areas, including A/D and D/A conversion, signal transmission and switching control in power electronics.

Keywords: Duty-cycle Modulation, Operational amplifiers, Pulse width modulation, Power electronics, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
3508 Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube.

Keywords: Laminar flow, flat tube, convective heat transfer, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
3507 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: Two phase flow, bubble growth, minichannel, generation frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
3506 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: Cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
3505 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: Square tube, bending stress, energy absorption, finite element analysis, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
3504 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: Electrowinning, intercell bars, PV energy, current modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
3503 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube

Authors: Arash Mir Abdolah Lavasani

Abstract:

The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.

Keywords: Pressure Drag, Cam Shaped, Experimental.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
3502 Heat Transfer Coefficients for Particulate Airflow in Shell and Coiled Tube Heat Exchangers

Authors: W. Witchayanuwat, S. Kheawhom

Abstract:

In this work, we experimentally study heat transfer from exhaust particulate air of detergent spray drying tower to water by using coiled tube heat exchanger. Water flows in the coiled tubes, where air loaded with detergent particles of 43 micrometers in diameter flows within the shell. Four coiled tubes with different coil pitches are used in a counter-current flow configuration. We investigate heat transfer coefficients of inside and outside the heat transfer surfaces through 400 experiments. The correlations between Nusselt number and Reynolds number, Prandtl number, mass flow rate of particulates to mass flow rate of air ratio and coiled tube pitch parameter are proposed. The correlations procured can be used to predicted heat transfer between tube and shell of the heat exchanger.

Keywords: Shell and coiled tube heat exchanger, Spray drying tower, Heat transfer coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
3501 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar

Abstract:

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

Keywords: Cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
3500 General Purpose Pulse Width Modulation Based Sliding Mode Controller for Buck DC-DC

Authors: M.Bensaada , A.Boudghene Stambouli , M.Bekhti, A. Bellar, L. Boukhris

Abstract:

This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.

Keywords: Buck, DC/DC converters, sliding mode control, pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
3499 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.

Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
3498 Effects of Catalyst Tubes Characteristics on a Steam Reforming Process in Ammonia

Authors: M.Boumaza

Abstract:

The tubes in an Ammonia primary reformer furnace operate close to the limits of materials technology in terms of the stress induced as a result of very high temperatures, combined with large differential pressures across the tube wall. Operation at tube wall temperatures significantly above design can result in a rapid increase in the number of tube failures, since tube life is very sensitive to the absolute operating temperature of the tube. Clearly it is important to measure tube wall temperatures accurately in order to prevent premature tube failure by overheating.. In the present study, the catalyst tubes in an Ammonia primary reformer has been modeled taking into consideration heat, mass and momentum transfer as well as reformer characteristics.. The investigations concern the effects of tube characteristics and superficial tube wall temperatures on of the percentage of heat flux, unconverted methane and production of Hydrogen for various values of steam to carbon ratios. The results show the impact of catalyst tubes length and diameters on the performance of operating parameters in ammonia primary reformers.

Keywords: Catalyst, tubes, reformer, performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3302
3497 Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions

Authors: Shi Chen, Zi Y. Chen, Jian K. Dan, Jian F. Li

Abstract:

Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.

Keywords: Electron density modulation, HED, nonlinearevolution, plasmas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
3496 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: High-speed running, current collector, contact strip, mathematical model, contact pressure, program control, wear, life cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
3495 Hybrid Pulse Width Modulation Techniques for the Reduction of Switching Losses and Voltage Harmonics in Cascaded Multilevel Inverters

Authors: Venkata Reddy Kota

Abstract:

These days, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements. Also, it is difficult to connect the traditional converters to the high and medium voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Different modulation topologies like Sinusoidal Pulse Width Modulation (SPWM), Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) are available for multilevel inverters. In this work, different hybrid modulation techniques which are combination of fundamental frequency modulation and multilevel sinusoidal-modulation are compared. The main characteristic of these modulations are reduction of switching losses with good harmonic performance and balanced power loss dissipation among the device. The proposed hybrid modulation schemes are developed and simulated in Matlab/Simulink for cascaded H-bridge inverter. The results validate the applicability of the proposed schemes for cascaded multilevel inverter.

Keywords: Hybrid PWM techniques, Cascaded Multilevel Inverters, Switching loss minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
3494 Dynamic Model of Automatic Loom on SimulationX

Authors: A. Jomartov, A. Tuleshov, B. Tultaev

Abstract:

One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.

Keywords: Automatic loom, dynamics, model, multibody, SimulationX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
3493 Modeling and Simulation of PSM DC-DC Buck Converter

Authors: Ramamurthy S, Vanaja Ranjan P

Abstract:

A DC-to-DC converter for applications involving a source with widely varying voltage conditions with loads requiring constant voltage from full load down to no load is presented. The switching regulator considered is a Buck converter with Pulse Skipping Modulation control whereby pulses applied to the switch are blocked or released on output voltage crossing a predetermined value. Results of the study on the performance of regulator circuit are presented. The regulator regulates over a wide input voltage range with slightly higher ripple content and good transient response. Input current spectrum indicates a good EMI performance with crowding of components at low frequency range.

Keywords: DC/DC Converter, Pulse Skipping Modulation, Buckregulator, Modulation Factor, Electromagnetic Interference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358