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Abstract—In this article, we investigate an approach that digitally
links individual development process steps by using the drive shaft
of an aircraft engine as representative example of a fiber polymer
composite. Such high-performance lightweight composite structures
have many adjustable parameters that influence the mechanical
properties. Only a combination of optimal parameter values can
lead to energy efficient lightweight structures. The development
tools required for the Engineering Design Process (EDP) are often
isolated solutions and their compatibility with each other is limited. A
digital framework is presented in this study, which allows individual
specialised tools to be linked via the generated data in such a way
that automated optimization across programs becomes possible. This
is demonstrated using the example of linking geometry generation
with numerical structural analysis. The proposed digital framework
for automated design optimization demonstrates the feasibility of
developing a complete digital approach to design optimization.
The methodology shows promising potential for achieving optimal
solutions in terms of mass, material utilization, eigenfrequency and
deformation under lateral load with less development effort. The
development of such a framework is an important step towards
promoting a more efficient design approach that can lead to stable
and balanced results.

Keywords—Digital Linked Process, composite, CFRP,
multi-objective, EDP, NSGA-2, NSGA-3, TPE.

I. INTRODUCTION

M ITIGATING climate change by reducing energy

consumption has become a major global priority.

Efficient Engineering Design Processes (EDP) enable the

development of sustainable lightweight systems fulfilling

increasing technical, economic, and ecological requirements.

During flight manoeuvres of a geared engine as shown in

Fig. 1, changes in the position of the rotating engine create

gyroscopic forces that counteract the change in position.

This results in constraining forces in the power transmission,

leading to increased stresses in the gear teeth and potentially

reducing their service life. Fiber reinforced polymers (FRPs),

with their directional and adjustable properties, make it

possible to design drive components that remain flexible

with high torsional strength (cf. Fig. 1). This combination of

properties can significantly reduce the loads in the engine and

extend the life of the gearbox.

FRP materials, with their outstanding and directional

depending material properties lead to a wide range of
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Fig. 1 Sectional view of the Rolls-Royce UltraFan® engine utilizing a Power
Gearbox, focusing on the torsionally stiff and flexible FRP structure of the

sun shaft, requirements and adjustable structure and material parameters

adjustable component properties. The combination with

adjusted structural parameters leads to additional complexity

of the EDP. Each single solution, as a combination of

material and structural parameter sets, provides different stress

orientations and levels in different areas of the component,

depending on the material allocation and orientation [1].

In order to fulfil the required functions, different levels of

functionality need to be checked and compared. Conventional

EDP approaches reach their limits when it comes to finding

the optimal solution with a reasonable amount of development

resources.

The aim of this study is based on [2] and it investigates

the feasibility of a comprehensive digital framework for the

EDP that can archive optimal solutions while minimizing the

development effort using the example of a drive shaft for a

Rolls-Royce jet engine. The developed composite driveshaft

can replace the current metallic drive shaft. This example

unifies a rather simple and comprehensible structure that is

subject to several requirements on the one hand, and the design

parameters to achieve them on the other (cf. Fig. 1).

A. Digital Driveshaft Optimization

Optimizing driveshafts for various applications has garnered

extensive attention within the field of engineering [3]–[8].

Researchers have primarily focused on investigating material

optimization, with focus on FRPs in particular [3], [4], [7].

While mass reduction, strength enhancement, and

eigenfrequency manipulation have been frequently employed

as optimization objectives [5], [6], the enhancement of

bending deformation has received comparatively little

attention. Bending deformation plays a critical role in the
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overall flexibility and performance of a driveshaft, especially

in applications where the shaft acts as a decoupler for

unwanted bending loads as well as lateral loads. Apparently,

a lower bending stiffness directly interferes with the

eigenfrequency, reducing the achievable revolutions per

minute (RPM). The ability to optimize a driveshaft for both

increased bending deformation and other vital parameters

presents a significant unaddressed research gap.
Further, driveshaft optimization studies often use single

parameter variation [5], [7]. In that approach, a single

parameter is changed while other parameters are held

constant. While informative, that methodology overlooks

the intricate interplay between different performance metrics

and the complex parameter dependencies. In contrast,

multi-objective optimization allows multiple objectives to be

considered simultaneously, providing a more comprehensive

assessment of the design space [9]. Despite its potential

benefits, a few studies have explored multi-objective

optimization in driveshaft design e.g. [6]. This was often

done by using conventional optimization algorithms that

are prone to problems such as localized solutions and

suboptimal performance [10], [11]. Nevertheless, the field of

optimization research has made significant progress, ushering

in cutting-edge algorithms designed to effectively address

these limitations. Noteworthy among these advancements

is the work by Deb and Jain [12], which introduces

state-of-the-art algorithms that not only confront these

constraints head-on but also provide enhanced and robust

optimization solutions. This raises the pertinent research

inquiry to what extent these novel methodologies have

contributed to improved outcomes.

B. Multi-Objective Optimization
Multi-objective optimization, as opposed to single-objective

optimization, involves optimizing multiple objective functions

simultaneously with the aim of uncovering the Pareto front,

which represents the intricate balance between these objectives

[13], [14]. Traditionally, multi-objective optimization focused

on two or three dimensions for intuitive visualization [15], but

the growing demand for optimizing numerous objectives has

highlighted the challenges of dealing with high-dimensional

objective outputs. This has led to increased research attention

on multi-objective optimization problems, especially recently.

To address the complexities of multi-objective optimization,

algorithms like the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) have been developed and refined [12].
In the area of multi-objective optimization, several

significant challenges have been identified [12]:

1) Ranking Individuals: With a large number of individuals

converging to the Pareto front in each generation,

the task of determining their relative superiority or

inferiority within the same rank becomes pivotal.

2) Convergence and Diversity: Maintaining a good balance

between converging to optimal solutions and preserving

diverse solutions in many-objective optimization is

crucial to avoid premature convergence [16].

3) Metrics and Computation: Developing metrics that

encompass both performance and diversity turns into a

formidable undertaking. Additionally, the computational

costs associated with these metrics can become

prohibitive.

4) Visualization and Representation: The visualization and

representation of the complex Pareto front becomes

increasingly difficult as the dimensionality of the

objective space escalates.

These challenges become more prominent as the objective

space dimensions increase, driving the development of

innovative algorithms tailored to address these issues within

the research community.

A recent and promising multi-objective algorithm is

NSGA-III, proposed by Deb and Jain [12], [17], which is a

modified version of NSGA-II. NSGA-III addresses the issue of

ranking individuals by selecting surviving individuals in each

generation through a ranking process based on the dominance

of their objective values. It also ensures diversity among

the selected individuals by allocating them to predefined

reference points as evenly as possible. This modified selection

procedure results in a more evenly distributed search across

each dimension, making NSGA-III a stable and reliable tool

suitable for a wide range of applications, including large-scale

agriculture, task allocation, and design exploration [18]–[20].

A significant challenge frequently encountered in real-world

scenarios is the inherent demand for computationally

expensive simulations to address the given problem. In

the pursuit of overcoming this challenge, Ozaki et al.

formulated a surrogate-based multiobjective optimization

algorithm, circumventing the necessity for an extensive

evaluation budget. This algorithm, called the ”Multiobjective

Tree-structured Parzen Estimator” (TPE), aims to solve this

issue. Further, empirical assessments conducted on various

benchmark problems underscore that TPE better aproximate

the Pareto fronts than existing methods with a limited budget

[21].

C. Research Objective

Given these gaps in the current literature, the research

objectives of this study are as follows:

1) Developing a framework in which fast design iterations

and optimizations of driveshafts are made accessible to

improve the further development of resource-efficient

and cost-effective lightweight designs.

2) Investigate the potential for optimizing FRP driveshaft

structures to simultaneously enhance mass reduction,

strength, eigenfrequency, and bending deformation.

3) Utilize state-of-the-art optimization algorithms to

overcome known issues associated with localized

solutions and suboptimal performance.

II. METHOD

This section outlines the methodology adopted to address

the intricate challenge of determining an optimal configuration

for the driveshaft system. The process involves a series of

systematic steps (cf. Fig. 2) aimed at achieving a refined

solution while considering various engineering aspects.
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Fig. 2 Method from problem analysis to results (a) with visualisation of exemplary results (b-f)

Legend
Static Parameter
Dependent Parameter
Optimised Parameter

Weight

Geometry

Geometry

Layers

Inner
Design
Space
Outer
Design
Space

Geometry

Loads
Result

Static Failure

Geometry

Loads
Result

Bending

Geometry

Loads
Result

Eigenfrequency

Fig. 3 Abstraction of the EDP with shared topology representation and
multiple modular evaluation systems as the basis for the development of a

digital framework

A. EDP-Abstraction

In the process of optimizing various driveshaft designs, it

is imperative to automatically evaluate each iteration. These

evaluations take place after the initial design is created and

are conducted separately. Therefore, the entire system can be

described as a composition of multiple components [2]: the

design module and several evaluation modules. Each module

is equipped with specific inputs and outputs. For instance, the

geometry module encompasses multiple inputs relating to the

different design parameters and generates the driveshaft’s mass

and geometry as an output. The various evaluation modules

share a common structure: they take geometry and load

cases as inputs and produce evaluative objectives as outputs.

Interconnections among these modules are established through

dependencies, with a prime example being the utilization of a

shared geometry representation, see Fig. 3.

To facilitate the interchangeability of evaluations

across different objectives, the development of a unified

representation of the evolving geometry is essential.

B. Model Representation

A fundamental requirement for this unifying representation

is the ability to accommodate varying shapes of the driveshaft

geometry, provided that the shape is rotationally symmetric.

This representation can be realized by conceptualizing the

driveshaft as a rotational function along the z-axis (see Fig. 4).

This abstraction offers a versatile framework for capturing

the essence of different driveshaft configurations, enabling

a consistent evaluation methodology across optimization

objectives.

Beyond the geometric considerations, it becomes

advantageous to introduce the concept of a ply stacking. Such

a stackup is characterized by a layup of different materials,

and its definition can be parameterized by z (vertical position)

and phi (angular position). This parametric definition allows

for the representation of materials that vary along the length

of the driveshaft.

Furthermore, the introduction of fiber angles for each

layer within the ply stackup proves to be particularly

valuable, especially in the context of working with FRPs.

These additional angles provide a means to precisely define

the orientation of individual layers within the stackup.

This level of granularity is crucial when dealing with
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Fig. 4 Schematic drawing of the driveshaft showing all geometry based
parameters of the structure (a) and the laminate (b)

directional-dependent materials such as FRPs, where the

mechanical properties are highly dependent on the orientation

of the reinforcing fibers.

The resulting representation strikes a balance between

simplicity and comprehensiveness, making it suitable for

integration into various finite element analysis codes, such as

PyMAPDL [22].

C. FE-Modelling

For a good performing optimization study, fast and accurate

evaluations for each iteration are important. To achieve this,

multiple, modular evaluation tools have been developed using

the finite element method (FEM) framework and implemented

using the simulation capabilities offered by the PyMAPDL

software [22].

1) Mass Evaluation: The mass of the driveshaft was

estimated by numerical integration of the density over the

occupied volume of the respective material.

2) Material Utilization: Evaluating the material utilization

of the driveshaft was achieved by taking the maximum from

two distinct loading cases: axial static pressure and axial

torque. By computing the maximum utilization for each

element with respect to the material specific failure criteria

(see Appendix A) the critical weakest point of failure was

identified.

3) Eigenfrequency Analysis: Finding a design with the

most suitable eigenfrequency behavior was done by computing

the first ten natural frequencies using standard numerical

techniques. Then, the closest frequency to the loading

condition was identified and the absolute difference from the

baseline case was calculated. This analysis facilitated a deeper

understanding of the dynamic behavior of the driveshaft under

various loading scenarios.

4) Deformation under lateral force: The performance of

the driveshaft under lateral force was evaluated by fixing

the driveshaft at one end and applying a force of 1N at

the other end. These simulations were used to quantify the

resulting displacement to ensure a sufficient decoupling of

forced displacements from the load applied by the flexible

driveshaft.

D. Optimization

The core of the proposed methodology revolves around

the integration of the driveshaft design and evaluation system

within an optimization framework. This approach facilitates

the simultaneous consideration of various performance metrics

during the design process. By encapsulating the driveshaft

design and evaluation tools within the optimization routine,

a holistic perspective is adopted, allowing the exploration

of design spaces that lead to improved performance across

multiple criteria.

TABLE I
DRIVESHAFT CONSTANTS

Constants Unit Value
L [mm] 500

D1 [mm] 170

D2 [mm] 340

Tmax [Nm] 160× 106

Nmax [N] −2000

rpmmin [rpm] 6000

n [/] 4

TABLE II
DRIVESHAFT PARAMETERS

Parameter Unit Range
s [/] 0.0–1.0

t [mm] 10–18

αi [◦] −90.0–90.0

mi [/] [”CF230”, ”CF395”, ”CF40”]

1) Parameter Variation: This study aims to identify the

optimal values for key parameters that significantly influence

the behavior of the driveshaft, see Fig. 4. While the diameters,

length, mechanical load and numbers of layers were kept

constant, see Table I, the other key parameter were marked

to be changed in a certain domain, see Table II.

The optimization process involved a systematic variation

of the shape parameter (s), which defines the cross-sectional

geometry of the drive shaft. Different values of (s) were

considered to assess their impact on factors such as torsional

stiffness and mass. The number of material layers (n) was

also varied to investigate its effect on overall strength and

durability.

For each material layer (i), the orientation (αi) of the

fibers or materials (mi) was adjusted to explore its influence

on load distribution and stress propagation. The materials

were selected from three different carbon FRP materials, with

”CF230” having a higher strength, ”CF395” having a higher
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modulus and ”CF40” having the highest compressive strength,

see Appendix A. Additionally, the thickness (t) at the smaller

diameter was defined and adapted over the length of the

driveshaft so that the the cross area stayed the same. The

thickness of each layer (ti) was calculated by dividing the

t(z) with n.
2) Multi-objective Criteria: By using the multi-objective

optimization approach the driveshaft was optimized to:

1) reduce mass,

2) minimize mechanical utilization,

3) maximize the difference between eigenfrequency and

frequency in the use case,

4) and maximizing the bending deformation.

In this study, the optimization process was carried out using the

different optimization algorithm within the Optuna framework

[23]. In order to ensure a balanced exploration of the parameter

space without overwhelming computational resources, a limit

of 1600 distinct trials was imposed on the search process. This

number represents a pragmatic compromise between obtaining

comprehensive results and avoiding computational overload.

It also accounts for the trade-off between exploring a broad

range of solutions and ensuring a meaningful analysis of the

resultant data.
3) Optimization Algorithm: From the spectrum of available

optimization algorithms NSGA-II, NSGA-III and TPE

are widely used for multi-objective optimization tasks.

NSGA-III excels in handling the inherent trade-offs between

conflicting objectives by generating a Pareto-optimal front,

which represents solutions that cannot be improved in

one criterion without worsening another. Conversely, the

TPE algorithm caters to computationally expensive problems

through the integration of priors to model the belief

regarding optimal parameters. Nonetheless, determining the

most suitable algorithm for the given problem remains an open

question. Consequently, these three algorithms were employed

individually to construct a benchmark test. The outcomes of

this optimization endeavor are elaborated upon in detail in

Section III-B.

III. RESULTS AND DISCUSSION

A. Framework
The proposed digital framework for automated design

optimization was developed in Python and published at Github

under the BSD-3-License [24]. Further, the developed system

shows advantages in the field of structural optimization.

These advantages encompass several key aspects, including

modularity and expandability, rapid adaptability, enhanced

speed, and the consideration of complex optimization

boundary conditions.
1) Modularity and Expandability: One of the major

strengths of the digital framework lies in its modular

nature, allowing for the incorporation of new functionalities

and features. Specifically, the framework enables mass

determination, eigenfrequency analysis, and assessment of

stress and torsional loads. These capabilities empower

engineers and researchers to efficiently explore and optimize

the performance of various structures under diverse load

conditions, enhancing the overall design process.

2) Rapid Adaptability: The digital framework is

characterized by its ability to quickly adapt to changes

in geometry and design conditions. The incorporation of

new geometries and adjustment of relevant parameters can

be accomplished within a timeframe of approximately two

days. This feature not only saves valuable time during the

optimization process but also encourages iterative design

improvements, ultimately leading to better-performing

structures.
3) Speed: This is a critical aspect of any modern

development process. The framework achieves fast design

iterations by utilizing optimized simulations to run as fast and

precise as possible resulting in optimization runs with 5000

different simulations in under 7 hours. Therefore, enabling

engineers to efficiently evaluate multiple design scenarios

and presenting a versatile approach to structural analysis and

design.
4) Consideration of Complex Optimization Boundary

Conditions: The digital framework uses state-of-the-art

optimization algorithms to account for complex optimization

constraints. For example, the framework enables the

optimization of fiber angles considering maximum and

minimum fiber angles due to manufacturing restrictions. By

accounting for such complex constraints, the digital framework

ensures that the final design exhibits improved performance

and reliability under real-world conditions.

B. Optimization Results
Of all the optimization trials for each optimization

algorithm, only a few had a maximum utilization value less

than 1. NSGA-II found 9, NSGA-III found 9 and TPE found

13 of these configurations. These trials stand out as the most

promising candidates for practical applications due to their

adherence to the utilization constraint. Further analysis was

performed on these trials to identify the best performing

solutions in each objective category.
The outcomes of the optimization process were visually

summarized in Fig. 5. This figure illustrates the distribution

of the useful trials and highlights the candidates that excel

in specific objectives. The candidates achieving the best

outcomes were then identified for mass reduction, maximizing

utilization within the constraint, maximum difference between

eigenfrequency and engine frequency, and higher bending

deformation.
To provide a concise overview of the findings, Table III

was constructed. This table presents a summary of the

best candidates in each objective category, showcasing

their key performance metrics. The metrics include mass,

utilization values, differences between eigenfrequency and

engine frequency, and bending deformation properties.
A notable observation that emerged from the analysis is

that the candidate with a [−45◦/45◦/− 45◦/45◦] stackup has

the lowest mass and the greatest lateral deformation. This

finding underlines the understanding of optimal fiber angles

in driveshaft designs, since this configuration is known to be

perfect for torque loads and suboptimal under lateral forces.
Interestingly, all three optimization algorithms identified this

configuration as one with the lowest mass and greatest lateral
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Fig. 5 The tested configurations of different driveshafts. Designs that would not withstand the loading were filtered out; the results were produced with three
different optimization algorithm: NSGA-II, NSGA-III and TPE are projected onto two objective axes across four categories: mass, material utilization, RPM

difference, and bending deformation
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TABLE III
BEST CANDIDATES FROM DIFFERENT OPTIMIZERS IN DIFFERENT CATEGORIES

Category Trail α [◦] m [/] s [/] t [mm] mass [kg] util. [/] rpm [rpm] deform. [μm]

NSGA2mass 1500 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03

NSGA3mass 1531 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03

TPEmass 1233 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03

NSGA2util. 1157 [-36, -39, 35, 23] [CF395, CF395, CF395, CF40] 0.1 17.2 10.0 0.99 39543 0.01

NSGA3util. 1287 [-60, -46, 44, 48] [CF40, CF395, CF395, CF395] 0.4 12.8 8.0 1.0 30696 0.02

TPEutil. 858 [-58, 59, -59, 59] [CF40, CF40, CF40, CF40] 0.9 16.0 11.8 0.99 25607 0.02

NSGA2rpm 1211 [41, -57, -38, 46] [CF395, CF40, CF395, CF395] 0.4 17.2 10.9 0.76 42259 0.01

NSGA3rpm 1057 [56, -37, 55, -42] [CF40, CF395, CF395, CF395] 0.4 15.2 9.6 0.93 37797 0.01

TPErpm 620 [-44, 48, -52, 48] [CF40, CF395, CF395, CF395] 0.3 14.8 9.1 0.91 38930 0.01

NSGA2deform. 1500 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03

NSGA3deform. 1531 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03

TPEdeform. 1233 [-45, 45, -45, 45] [CF40, CF40, CF40, CF40] 0.2 10.8 6.4 0.98 31337 0.03
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Fig. 6 Best configuration value in one of the categories mass, utilization,
rpm and deformation over the optimization iterations

deformation. But TPE found this configuration nearly 300

trails before the other.

As depicted in Fig. 6, the TPE algorithm demonstrates a

remarkable ability to identify superior solutions, particularly

concerning the earlier convergence of values in various

categories. TPE’s adeptness at quickly identifying optimal

solutions in these categories sets it apart from both NSGA-II

and NSGA-III.

Interestingly, the comparative performance of NSGA-II

and NSGA-3 raises pertinent questions. NSGA-III seems to

perform slightly worse than NSGA-II in the simulations. This

discrepancy might be attributed to the design philosophy

of NSGA-III, which intentionally places less emphasis

on the axes in an attempt to achieve a more balanced

exploration of the solution space. Consequently, the perceived

underperformance of NSGA-III could stem from its inherent

design trade-offs.

To gain a better understanding of the factors influencing

the optimization outcomes, a normalized importance plot was

generated (Fig. 7). This plot reveals the relative importance of

various design parameters with respect to each objective.

The findings from the analysis underscore the paramount

significance of layer thickness in the pursuit of mass

reduction. The overall thickness also plays a crucial role

in generating driveshaft configurations with better material

utilization and higher lateral deformation. In addition, the

analysis reveals the critical role of fiber angles in manipulating

the driveshaft’s dynamic behavior. A nuanced interplay

between fiber orientations significantly affects the driveshaft’s

response to changes in frequency and deformation.

A notable revelation from the analysis is the profound

impact of a combined approach involving thickness, geometry

shape, and fiber angles, when optimizing for lower material

utilization. The complex interdependence of these factors

requires a holistic optimization strategy, wherein their

combined effects are carefully calibrated.

Curiously, the research findings indicate that neither of

the optimization algorithm places substantial importance

on material selection. This observation can be attributed

to the comparable material properties of the candidate

materials under consideration. The marginal differences in

material behavior render their impact less pronounced in

the optimization process. However, this does not negate the

importance of material selection in other design contexts

where material properties differ significantly.

The optimization results give strong indications, that

an application of the methodology to the development of

FRP structures, using the example of a high-performance
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Fig. 7 The normalized parameter importance, when finding the best results

lightweight driveshaft for a Rolls-Royce jet engine of future

generation in the lower technology readiness levels, is not only

feasible in an digital environment, but also provides valuable

performance improvements and insights.

IV. CONCLUSION

In conclusion, the research presented in this article signifies

an important step towards a more efficient design approach for

high-performance lightweight composite structures. This was

illustrated with the driveshaft of an aircraft engine as suitable

representation of a fiber-polymer composite. The investigation

focused on digitally linking individual development process

steps, like geometry generation, meshing and FEM analysis,

with the aim to optimize various adjustable parameters that

influence mechanical properties.

The study presented a digital framework for automated

design optimization, which not only streamlines the

Engineering Design Process but also enhances compatibility

between isolated development tools. This framework,

demonstrated by linking geometry changes with multiple

numerical structural analysis, showcases the potential for

achieving optimal solutions with significantly reduced

development effort.

In the culmination of this study, numerous optimization

investigations have been undertaken, employing a variety

of optimization algorithms, including NSGA-II, NSGA-III,

and TPE. These algorithms were employed in the pursuit

of identifying an optimal synthesis of geometry and

material configurations. The overarching objective was to

achieve designs characterized by minimal mass and material

utilization, while concurrently demonstrating substantial

differentials in eigenfrequency and bending deformation

performance.

Across all the diverse algorithms employed, a consistent

trend in results emerged, underpinning the robustness of

the findings. Particularly noteworthy is the performance

of the TPE algorithm, which not only yielded outcomes

consistent with the other methods but also found the best

configurations significantly earlier. The harmonization of

outcomes underscores the validity and reliability of the

identified optimal solutions, reinforcing the significance of this

research in advancing the understanding and application of

optimization techniques in engineering design.

Since all optimization approaches identified a ±45◦, which

is a known optimal solution for driveshafts under torque

loading by lightweight specialists, it raises the possibility

that an expedited manual process might yield comparable

results in a similar timeframe. However, the fast process that

allows to test thousands of different configurations and the

growing database of evaluated designs could prove invaluable

in scenarios involving unforeseen alterations to the specifics of

the use case. Although not within the scope of this paper, this

aspect holds potential interest for future research endeavors.

In summary, the findings underscore the potential of an

interconnected digital infrastructure to revolutionize design

and development processes across various industries, offering

a promising path towards resource-efficient, cost-effective, and

high-performance lightweight designs.
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APPENDIX A

MATERIAL PROPERTIES

TABLE IV
MATERIAL PROPERTIES: CF230 (UD PREPREG 230 GPA)

Property Unit Value
E|| [MPa] 121000

E⊥ [MPa] 8600

ν||⊥ [ ] 0.27

ν⊥⊥ [ ] 0.4

G||⊥ [MPa] 2634.2

ρ
[
kg/mm3

]
1.49

R+
|| [MPa] 2231

R−
|| [MPa] -1082

R+
⊥ [MPa] 29

R−
⊥ [MPa] -100

R||⊥ [MPa] 60

failure [ ] Cuntze

TABLE V
MATERIAL PROPERTIES: CF395 (UD PREPREG 395 GPA)

Property Unit Value
E|| [MPa] 209000

E⊥ [MPa] 9450

ν||⊥ [ ] 0.27

ν⊥⊥ [ ] 0.4

G||⊥ [MPa] 5500

ρ
[
kg/mm3

]
1.54

R+
|| [MPa] 1979

R−
|| [MPa] -893

R+
⊥ [MPa] 26

R−
⊥ [MPa] -139

R||⊥ [MPa] 100

failure [ ] Cuntze

TABLE VI
MATERIAL PROPERTIES: CF40 (HTS40 UD EPOXY 0.55)

Property Unit Value
E|| [MPa] 133400

E⊥ [MPa] 5750

ν||⊥ [ ] 0.2875

ν⊥⊥ [ ] 0.37

G||⊥ [MPa] 2358

ρ
[
kg/mm3

]
1.558

R+
|| [MPa] 852

R−
|| [MPa] -631

R+
⊥ [MPa] 57

R−
⊥ [MPa] -200

R||⊥ [MPa] 132

failure [ ] Cuntze
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