Search results for: multi-wall carbon nanotubes.
696 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk
Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli
Abstract:
The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.
Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718695 Adsorption of Phenol, 3-Nitrophenol and Dyes from Aqueous Solutions onto an Activated Carbon Column under Semi-Batch and Continuous Operation
Authors: I. Moraitopoulos, Z. Ioannou, J. Simitzis
Abstract:
The present study examines the adsorption of phenol, 3-nitrophenol and dyes (methylene blue, alizarine yellow), from aqueous solutions onto a commercial activated carbon. Two different operations, semi-batch and continuous with reflux, were applied. The commercial activated carbon exhibits high adsorption abilities for phenol, 3-nitrophenol and dyes (methylene blue and alizarin yellow) from their aqueous solutions. The adsorption of all adsorbates after 1 h is higher by the continuous operation with reflux than by the semibatch operation. The adsorption of phenol is higher than that of 3-nitrophenol for both operations. Similarly, the adsorption of alizarin yellow is higher than that of methylene blue for both operations. The regenerated commercial activated carbon regains its adsorption ability due to the removal of the adsorbate from its pores during the regeneration.
Keywords: Activated carbon, adsorption, phenols, dyes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059694 A Study of Removing SUVA and Trihalomethanes by Biological Activated Carbon
Authors: Tseng, Wei-Bin., Lou, Jie-Chung, Han, Jia-Yun
Abstract:
SUVA (equivalent to UV254/DOC) value in raw water is a precursor for the formation of trihalomethane during chlorination at a water treatment plant. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal rate of treating the trihalomethanes formation potential (THMFP) was conducted by using a biological activated carbon. The hydraulic retention time and SUVA loading were major factors in biological degradation tests. The results showed that biological powder-activated carbon (BPAC) lowered the average concentration of UV254 and value of SUVA in raw water. A removal efficiency of THMFP was present in the treatment of the three primary organic carbon items. These results highlighted the importance of the BPAC had an excellent treatment efficiency on THMFP.
Keywords: Water treatment, BPAC, THMFP, SUVA, correlation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630693 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building
Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert
Abstract:
Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.
Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995692 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel
Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha
Abstract:
The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.Keywords: Carbon steel, laser surface melting, microstructure, microhardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558691 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).
Keywords: Dual Phase Steel, Deformation, Acoustic Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541690 Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells
Authors: S. Tangjuank, N. Insuk , J. Tontrakoon , V. Udeye
Abstract:
Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.
Keywords: Activated carbon, cashew nut shell, heavy metals, adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404689 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011
Authors: Mario Gómez, José Carlos Rodríguez
Abstract:
This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.
Keywords: Energy consumption, environmental Kuznets curve, economic growth, causality, co-integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118688 Role of Sequestration of CO2 Due to the Carbonation in Total CO2 Emission Balance in Concrete Life
Authors: P. P. Woyciechowski
Abstract:
Calculation of the carbon footprint of cement concrete is a complex process including consideration of the phase of primary life (components and concrete production processes, transportation, construction works, maintenance of concrete structures) and secondary life, including demolition and recycling. Taking into consideration the effect of concrete carbonation can lead to a reduction in the calculated carbon footprint of concrete. In this paper, an example of CO2 balance for small bridge elements made of Portland cement reinforced concrete was done. The results include the effect of carbonation of concrete in a structure and of concrete rubble after demolition. It was shown that important impact of carbonation on the balance is possible only when rubble carbonation is possible. It was related to the fact that only the sequestration potential in the secondary phase of concrete life has significant value.Keywords: Carbon footprint, balance of carbon dioxide in nature, concrete carbonation, the sequestration potential of concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832687 Facile Synthesis of Vertically Aligned ZnO Nanowires on Carbon Layer by Vapour Deposition
Authors: Kh. A. Abdullin, N. B. Bakranov, S. E. Kudaibergenov, S.E. Kumekov, V. N. Ermolaev, L. V. Podrezova
Abstract:
A facile vapour deposition method of synthesis of vertically aligned ZnO nanowires on carbon seed layer was developed. The received samples were investigated on electronic microscope JSM-6490 LA JEOL and x-ray diffractometer X, pert MPD PRO. The photoluminescence spectra (PL) of obtained ZnO samples at a room temperature were studied using He-Cd laser (325 nm line) as excitation source.
Keywords: ZnO nanowires, vapor-phase deposition, Nicatalytic layer, facile method of synthesis, carbon catalytic layer, thephotoluminescence spectra, X-ray spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454686 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment
Authors: Bireswar Paul, Amitava Datta
Abstract:
Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material.
Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880685 Carbon Storage in Above-Ground Biomass of Tropical Deciduous Forest in Ratchaburi Province, Thailand
Authors: Ubonwan Chaiyo, Savitri Garivait, Kobsak Wanthongchai
Abstract:
The study site was located in Ratchaburi Province, Thailand. Four experimental plots in dry dipterocarp forest (DDF) and four plots in mixed deciduous forest (MDF) were set up to estimate the above-ground biomass of tree, sapling and bamboo. The allometry equations were used to investigate above-ground biomass of these vegetation. Seedling and other understory were determined using direct harvesting method. Carbon storage in above-ground biomass was calculated based on IPCC 2006. The results showed that the above-ground biomass of DDF at 20-40% slope, <20% slope and MDF at <20% slope were 91.96, 30.95 and 59.44 ton/ha, respectively. Bamboo covers about half of total aboveground biomass in MDF, which is a specific characteristic of this area. The carbon sequestration potential in above-ground biomass of plot slope range 20-40% DDF, <20% DDF and <20% MDF are 43.22, 14.55 and 27.94 ton C/ha, respectively.Keywords: Carbon storage, aboveground biomass, tropical deciduous forest, dry dipterocarp forest, mixed deciduous forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968684 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites
Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky
Abstract:
In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.
Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840683 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition
Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov
Abstract:
In this article a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes- in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.
Keywords: Activated carbon, adsorption, copper, ozone decomposition, TiO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652682 Towards CO2 Adsorption Enhancement via Polyethyleneimine Impregnation
Authors: Supasinee Pipatsantipong, Pramoch Rangsunvigit, Santi Kulprathipanja
Abstract:
To reduce the carbon dioxide emission into the atmosphere, adsorption is believed to be one of the most attractive methods for post-combustion treatment of flue gas. In this work, activated carbon (AC) was modified by polyethylenimine (PEI) via impregnation in order to enhance CO2 adsorption capacity. The adsorbents were produced at 0.04, 0.16, 0.22, 0.25, and 0.28 wt% PEI/AC. The adsorption was carried out at a temperature range from 30 °C to 75 °C and five different gas pressures up to 1 atm. TG-DTA, FT-IR, UV-visible spectrometer, and BET were used to characterize the adsorbents. Effects of PEI loading on the AC for the CO2 adsorption were investigated. Effectiveness of the adsorbents on the CO2 adsorption including CO2 adsorption capacity and adsorption temperature was also investigated. Adsorption capacities of CO2 were enhanced with the increase in the amount of PEI from 0.04 to 0.22 wt% PEI before the capacities decreased onwards from0.25 wt% PEI at 30 °C. The 0.22 wt% PEI/AC showed higher adsorption capacity than the AC for adsorption at 50 °C to 75 °C.Keywords: Activated Carbon, Adsorption, CO2, Polyethyleneimine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140681 Modelling Indoor Air Carbon Dioxide (CO2)Concentration using Neural Network
Authors: J-P. Skön, M. Johansson, M. Raatikainen, K. Leiviskä, M. Kolehmainen
Abstract:
The use of neural networks is popular in various building applications such as prediction of heating load, ventilation rate and indoor temperature. Significant is, that only few papers deal with indoor carbon dioxide (CO2) prediction which is a very good indicator of indoor air quality (IAQ). In this study, a data-driven modelling method based on multilayer perceptron network for indoor air carbon dioxide in an apartment building is developed. Temperature and humidity measurements are used as input variables to the network. Motivation for this study derives from the following issues. First, measuring carbon dioxide is expensive and sensors power consumptions is high and secondly, this leads to short operating times of battery-powered sensors. The results show that predicting CO2 concentration based on relative humidity and temperature measurements, is difficult. Therefore, more additional information is needed.Keywords: Indoor air quality, Modelling, Neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892680 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.
Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897679 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran
Authors: Sahar Elkaee Behjati
Abstract:
Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.
Keywords: Dust, leaves, uptake total carbon, tehran, tree species.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731678 FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers
Authors: R. Eslami Farsani, S. Raissi, A. Shokuhfar, A. Sedghi
Abstract:
In this investigation, types of commercial and special polyacrylonitrile (PAN) fibers contain sodium 2-methyl-2- acrylamidopropane sulfonate (SAMPS) and itaconic acid (IA) comonomers were studied by fourier transform infrared (FT-IR) spectroscopy. The study of FT-IR spectra of PAN fibers samples with different comonomers shows that during stabilization of PAN fibers, the peaks related to C≡N bonds and CH2 are reduced sharply. These reductions are related to cyclization of nitrile groups and stabilization procedure. This reduction in PAN fibers contain IA comonomer is very intense in comparison with PAN fibers contain SAMPS comonomer. This fact indicates the cycling and stabilization for sample contain IA comonomer have been conducted more completely. Therefore the carbon fibers produced from this material have higher tensile strength due to suitable stabilization.Keywords: PAN Fibers, Stabilization, Carbon Fibers, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6046677 A Study on Removal Characteristics of (Mn2+) from Aqueous Solution by CNT
Authors: Nassereldeen A. Kabashi, Suleyman A. Muyibi. Mohammed E. Saeed., Farhana I. Yahya
Abstract:
It is important to remove manganese from water because of its effects on human and the environment. Human activities are one of the biggest contributors for excessive manganese concentration in the environment. The proposed method to remove manganese in aqueous solution by using adsorption as in carbon nanotubes (CNT) at different parameters: The parameters are CNT dosage, pH, agitation speed and contact time. Different pHs are pH 6.0, pH 6.5, pH 7.0, pH 7.5 and pH 8.0, CNT dosages are 5mg, 6.25mg, 7.5mg, 8.75mg or 10mg, contact time are 10 min, 32.5 min, 55 min, 87.5 min and 120 min while the agitation speeds are 100rpm, 150rpm, 200rpm, 250rpm and 300rpm. The parameters chosen for experiments are based on experimental design done by using Central Composite Design, Design Expert 6.0 with 4 parameters, 5 levels and 2 replications. Based on the results, condition set at pH 7.0, agitation speed of 300 rpm, 7.5mg and contact time 55 minutes gives the highest removal with 75.5%. From ANOVA analysis in Design Expert 6.0, the residual concentration will be very much affected by pH and CNT dosage. Initial manganese concentration is 1.2mg/L while the lowest residual concentration achieved is 0.294mg/L, which almost satisfy DOE Malaysia Standard B requirement. Therefore, further experiments must be done to remove manganese from model water to the required standard (0.2 mg/L) with the initial concentration set to 0.294 mg/L.Keywords: Adsorption, CNT, DOE, Manganese, Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471676 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide
Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus
Abstract:
The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.
Keywords: Soybean oil, SC-CO2 extraction, yield, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945675 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation
Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina
Abstract:
An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093674 Supercritical Carbon Dioxide Extraction of Phenolics and Tocopherols Enriched Oil from Wheat Bran
Authors: Kyung-Tae Kwon, Md. Salim Uddin, Go-Woon Jung, Jeong-Eun Sim, Byung-Soo Chun
Abstract:
Supercritical carbon dioxide (SC-CO2) was used as a solvent to extract oil from wheat bran. Extractions were carried out in a semi-batch process at temperatures ranging from 40 to 60ºC and pressures ranging from 10 to 30 MPa, with a carbon dioxide (CO2) flow rate of 26.81 g/min. The oil obtained from wheat bran at different extraction conditions was quantitatively measured to investigate the solubility of oil in SC-CO2. The solubility of wheat bran oil was found to be enhanced in high temperature and pressure. The composition of fatty acids in wheat bran oil was measured by gas chromatography (GC). Linoleic, palmitic, oleic and γ-linolenic acid were the major fatty acids of wheat bran oil. Tocopherol contents in oil were analyzed by high performance liquid chromatography (HPLC). The highest amount of phenolics and tocopherols (α and β) were found at temperature of 60ºC and pressure of 30 MPa.Keywords: Supercritical carbon dioxide, Tocopherols, Totalphenolic content, Wheat bran oil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568673 Field Emission Properties of Multi-wall Carbon Nanotube Field Emitters using Graphite Tip by Electroporetic Deposition
Authors: Gui Sob Byun, Yang Doo Lee, Kyong Soo Lee, Keun Soo Lee, Sun-Woo Park, Byeong Kwon Ju
Abstract:
We fabricated multi-walled carbon nanotube (MCNT) emitters by an electroporetic deposition (EPD) method using a MCNT-sodium dodecyl sulfate (SDS) suspension. MCNT films were prepared on graphite tip using EPD. We observe field emission properties of MCNT film after heat treatment. Consequently, The MCNT film on graphite tip exhibit good electron emission current.Keywords: Field emission, Multi-wall carbon-nanotube (MCNT), Electrophoretic deposition (EPD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412672 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment
Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng
Abstract:
Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 ℃, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source.
Keywords: Aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479671 Concept of Net Zero Ecotourism in Sustainable Tourism Industry Development
Authors: Kwok Tak Kit
Abstract:
With the increase of demand and popularity of ecotourism development to address the concern of carbon emission, the acceleration of development of the concept of net zero carbon ecotourism can increase international competitiveness, sustainability and productivity. This paper aims to outline the major key components and considerations in ecotourism development with integration of net zero strategy and provide recommendation and reference to government agents, Architecture, Engineering and Construction (AEC) industry and stakeholders to contribute to the target of net zero and environmentally friendly ecotourism development project. This paper explores the alternative to the reliance on local regulation and ecotourism certification programs as a base tool to achieve the higher standard of the reduction of the use of energy and natural resources in ecotourism development and to enhance their sustainability.
Keywords: Net zero ecotourism, sustainability, embodied carbon, Paris Agreement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543670 Reducing Humic Acid and Disinfection By-products in Raw Water using a Bio-activated Carbon Filter
Authors: Wei-Pin Tseng, Jie-Chung Lou, Ming-Ching Wu, Huang-Ming Fang
Abstract:
For stricter drinking water regulations in the future, reducing the humic acid and disinfection byproducts in raw water, namely, trihalomethanes (THMs) and haloacetic acids (HAAs) is worthy for research. To investigate the removal of waterborne organic material using a lab-scale of bio-activated carbon filter under different EBCT, the concentrations of humic acid prepared were 0.01, 0.03, 0.06, 0.12, 0.17, 0.23, and 0.29 mg/L. Then we conducted experiments using a pilot plant with in-field of the serially connected bio-activated carbon filters and hollow fiber membrane processes employed in traditional water purification plants. Results showed under low TOC conditions of humic acid in influent (0.69 to 1.03 mg TOC/L) with an EBCT of 30 min, 40 min, and 50 min, TOC removal rates increases with greater EBCT, attaining about 39 % removal rate. The removal rate of THMs and HAAs by BACF was 54.8 % and 89.0 %, respectively.
Keywords: Bio-activated carbon filter, hollow fiber membrane, humic acid, THMs, HAAs, Water Treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165669 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film
Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali
Abstract:
The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483668 Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon
Authors: Olayinka Omotosho, Anthony Amori
Abstract:
Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.
Keywords: Zinc chloride, cassava peels, activated carbon, bamboo waste, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517667 Simulation on the Performance of Carbon Dioxide and HFC-125 Heat Pumpsfor Medium-and High-Temperature Heating
Authors: Young-Jin Baikand, Minsung Kim
Abstract:
In order to compare the performance of the carbon dioxide and HFC-125 heat pumps for medium-and high-temperature heating, both heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler were fixed at 40/90°C and 40/150°C.The results shows that the HFC-125 heat pump has 6% higher heating COP than carbon dioxide heat pump when the heat sink exit temperature is fixed at 90ºC, while the latter outperforms the former when the heat sink exit temperature is fixed at 150ºC under the simulation conditions considered in the present study.
Keywords: Carbon dioxide, HFC-125, trans critical, heat pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625