Search results for: Switched beam
397 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets
Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy
Abstract:
In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.
Keywords: Laser welding, Butt weld, 304 SS, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990396 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames
Authors: Kyung-Suk Choi, Hyung-Joon Kim
Abstract:
Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. The structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of traditional steel moment-resisting systems. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEMs) of unit modular frames to investigate the cyclic behavior of beam-column joints with the access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into semi-rigid connections even if there are access holes.
Keywords: Unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation, access holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725395 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation
Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus
Abstract:
This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563394 Studies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding
Authors: K. Kalaiselvan, A. Elango
Abstract:
To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most important parameters that influence directly the quality of welds. In this experimental work for joining 1mm thick TI6AL4V and AA2024 alloy and JK600 Nd:YAG pulsed laser units used. The distortions at different welding power and speed of titanium and aluminium thin sheet alloys are investigated. Test results reveal that increase in welding speed increases distortion in weldment
Keywords: Laser Beam Welding, Titanium, Aluminium alloy sheets and distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687393 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach
Authors: S.H. Mirtalaie, M.A. Hajabasi
Abstract:
In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.
Keywords: Free vibration, laminated composite beam, material coupling, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296392 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding
Authors: K. Kalaiselvan, A. Elango
Abstract:
Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.
Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984391 Notes on Vibration Design for Piezoelectric Cooling Fan
Authors: Thomas Jin-Chee Liu, Yu-Shen Chen, Hsi-Yang Ho, Jyun-Ting Liu, Chih-Chun Lee
Abstract:
This paper discusses some notes on the vibration design for the piezoelectric cooling fan. After reviewing the fundamental formulas of the cantilever Euler beam, it is not easy to find the optimal design of the piezoelectric fan. The experiments also show the complicated results of the vibration behavior and air flow.
Keywords: Piezoelectric cooling fan, vibration, cantilever Euler beam, air flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021390 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method
Authors: Masoud Mahdavi
Abstract:
During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.
Keywords: Steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635389 Experimental Validation of Treatment Planning for Multiple Radiotherapy Fields by EDR2 Film Dosimeter
Authors: Vahid Fayaz , Asieh Tavakol
Abstract:
To investigate the applicability of the EDR-2 film for clinical radiation dosimetry, percentage depth-doses, profiles and distributions in open and dynamically wedged fields were measured using film and compared with data from a Treatment Planning system.The validity of the EDR2 film to measure dose in a plane parallel to the beam was tested by irradiating 10 cm×10 cm and 4 cm×4 cm fields from a Siemens, primus linac with a 6MV beam and a source-to-surface distance of 100 cm. The film was placed Horizontally between solid water phantom blocks and marked with pin holes at a depth of 10 cm from the incident beam surface. The film measurement results, in absolute dose, were compared with ion chamber measurements using a Welhoffer scanning water tank system and Treatment Planning system. Our results indicate a maximum underestimate of calculated dose of 8 % with Treatment Planning system.Keywords: 6MV Photon , EDR-2 film, Radiotherapy, TreatmentPlanning system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524388 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review
Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan
Abstract:
Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.
Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361387 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base
Authors: M. Hari Prabhu
Abstract:
This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.
Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431386 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.Keywords: Shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016385 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting
Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed
Abstract:
Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.
Keywords: Additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172384 Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams
Authors: Khoa Tan Nguyen, Tuan Anh Le, Kihak Lee
Abstract:
This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly ash-based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.
Keywords: Geopolymer concrete beam, finite element method, stress strain relation, modulus elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492383 Effects of Boundary Conditions on the Dynamic Values of Solid Structures
Authors: F. Kadioglu, M. Z. Polat, A. R. Gunay
Abstract:
Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices, and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate the possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. First, the governing equations of beam specimens related to the free-free and clamped-free boundary conditions were expressed to be able to find their natural frequencies, flexural modulus and damping values. To get a clear idea of the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and that the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained. It was obvious that the set-up with clamped-free boundary conditions was not able to produce correct/reliable damping values for the specimens with low inherent damping.
Keywords: Boundary conditions, damping, dynamic values, non-contact measuring systems, vibrating beam technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477382 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller
Authors: Thandar Aung, Tun Lin Naing
Abstract:
In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421381 On the Exact Solution of Non-Uniform Torsion for Beams with Asymmetric Cross-Section
Authors: A.Campanile, M. Mandarino, V. Piscopo
Abstract:
This paper deals with the problem of non-uniform torsion in thin-walled elastic beams with asymmetric cross-section, removing the basic concept of a fixed center of twist, necessary in the Vlasov-s and Benscoter-s theories to obtain a warping stress field equivalent to zero. In this new torsion/flexure theory, despite of the classical ones, the warping function will punctually satisfy the first indefinite equilibrium equation along the beam axis and it wont- be necessary to introduce the classical congruence condition, to take into account the effect of the beam restraints. The solution, based on the Fourier development of the displacement field, is obtained assuming that the applied external torque is constant along the beam axis and on both beam ends the unit twist angle and the warping axial displacement functions are totally restrained. Finally, in order to verify the feasibility of the proposed method and to compare it with the classical theories, two applications are carried out. The first one, relative to an open profile, is necessary to test the numerical method adopted to find the solution; the second one, instead, is relative to a simplified containership section, considered as full restrained in correspondence of two adjacent transverse bulkheads.Keywords: Non-uniform torsion, Asymmetric cross-section, Fourier series, Helmholtz equation, FE method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946380 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams
Authors: Babak Safaei, A. M. Fattahi
Abstract:
In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903379 Effect of Welding Processes on Fatigue Properties of Ti-6Al-4V Alloy Joints
Authors: T.S.Balasubramanian, V.Balasubramanian, M.A.Muthumanikkam
Abstract:
This paper reports the fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V titanium alloy. Centre cracked tensile specimens were prepared to evaluate the fatigue crack growth behaviour. A 100kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load (stress ratio of 0.1 and frequency of 10 Hz). Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Critical and threshold stress intensity factor ranges were also evaluated. Fatigue crack growth behaviour of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.Keywords: Fatigue, Non ferrous metals and alloys, welding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4520378 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle
Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah
Abstract:
This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435377 Structural Characteristics of HPDSP Concrete on Beam Column Joints
Authors: Sushil Kumar Swar, Sanjay Kumar Sharma, Hari Krishan Sharma, Sushil Kumar
Abstract:
The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.Keywords: High Performance Densified Small Particle Concrete (HPDSPC), Steel Fıber Reinforced Concrete (SFRC), Slurry Infiltrated Concrete (SIFCON), Slurry Infiltrated Mat Concrete (SIMCON).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170376 Quasi-Static Analysis of End Plate Beam-to-Column Connections
Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones
Abstract:
This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.
Keywords: Quasi-static, end plate, finite element, connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957375 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933374 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Authors: Tripatjot S. Panag, J. S. Dhillon
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843373 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams
Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas
Abstract:
Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.Keywords: Steel structures, web-expanded beams, Angelina™ beam, optimum design, failure modes, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495372 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.
Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982371 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load
Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz
Abstract:
The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.Keywords: Finite element beam model, Composite Beams, stability analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223370 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623369 Reliable Damping Measurements of Solid Beams with Special Focus on the Boundary Conditions and Non-Contact Test Set-Ups
Authors: Ferhat Kadioglu, Ahmet Reha Gunay
Abstract:
Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. To get clear idea about the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained.
Keywords: Vibrating beam technique, dynamic values, damping, boundary conditions, non-contact measuring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 299368 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322