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On the Exact Solution of Non-Uniform Torsion
for Beams with Asymmetric Cross-Section

A.Campanile, M.

Abstract—This paper deals with the problem of non-uniform
torsion in thin-walled eastic beams with asymmetric cross-section,
removing the basic concept of afixed center of twist, necessary in the
Vlasov's and Benscoter's theories to obtain a warping stress field
equivaent to zero. In this new torsion/flexure theory, despite of the
classical ones, the warping function will punctualy satisfy the first
indefinite equilibrium equation along the beam axis and it wont’ be
necessary to introduce the classical congruence condition, to take into
account the effect of the beam restraints. The solution, based on the
Fourier development of the displacement field, is obtained assuming
that the applied external torque is constant along the beam axis and
on both beam ends the unit twist angle and the warping axia
displacement functions are totally restrained.

Finally, in order to verify the feasibility of the proposed method
and to compare it with the classica theories, two applications are
carried out. The first one, relative to an open profile, is necessary to
test the numerical method adopted to find the solution; the second
one, instead, is relative to a simplified containership section,
considered as full restrained in correspondence of two adjacent
transverse bulkheads.

Keywords—Non-uniform torsion, Asymmetric cross-section,
Fourier series, Hdmholtz equation, FE method.

. INTRODUCTION

t's well known that the classical Saint Venant’ s theory is

based on the uncoupling and superposition of four basic
responses. stretching; major-axis bending, coupled with major
shear; minor-axis bending, coupled with minor shear and pure
torsion.
Anyway, when the beam is subjected to a varying torque or
the axiad warping displacements are partidly or totally
restrained at one or both member ends, the torsion becomes
non-uniform, thetwist rate varies along the beam and the
displaced centroids describe a curve. Inthiscase two great
problems arise: first of all, it is not possible to uncouple a pure
torque loading from the bending one caused by the curvature
of the centroidal axis; then, the centre of twist is not constant
along the beam axis.

So, in the following, the traditional concept of afixed centre
of twist is abandoned and a more general theory is devel oped.
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Furthermore, despite of the classical theories, the warping
function will fully respect the first indefinite equilibrium
equation and the displacement field, decomposed by means of
Fourier series, will implicitly respect aso the beam ends
boundary conditions.

II. THEORY DEVELOPMENT

Let us assume that the beam cross-section rotates
undeformed through a small angle #%,(x) about the centroidal
axis x, warps out of its plane and is subjected to rigid body
motions aong the section principal axes of inertia Let us
define the global Cartesian frames sketched in Fig. 1, with
origin O in correspondence of the left beam end, x axis
defined along the beam length and passing through the section
centroid and 77, { axes defined in the section plane and
coinciding with the section principal axes of inertia.

g

Fig. 1 Reference Coordinate system

In this hypothesis, denoting by u, v, w the three displacement
components in the x, 7, ¢ directions respectively, the
displacement field can be assumed as follows:

dwy

~ dv,
u=a(x7,¢) vl S

v=Vo(x)- 4 (X)g
w=wWo (x)+ 2% (X)7

@

where {(x,77,¢) is the axial displacement function, #(x) is
the rotation of the section about the x-axis, positive if counter-
clockwise, v,(x) and w,(x) are the centroid lateral rigid body
motions along the 77 and { axes, respectively.

With the previous assumptions and notations, the strain
components (for small deformation) are then given by:
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N d?vy _dPwy
“oox o dx? dx?
£y = (2.1)
£,=0
ou
=—-0
7/>(y 877 1
ou
Ve ==_t01 (22)
g
Yy =0
having defined the unit twist angle as follows:
dg
1= d_xt (2.3)

Denoting by E the Young modulus, G the Coulomb modulus
and v the Poisson modulus, the Navier equations can be so
specialized:

ou d2y, d2w
T

ox dx2 dx2
ou

Ty = G{% - gﬂl} (©)
Ju

As regards the (3); expression, it derives by assuming as
anelastic tensions o, in the web, o, in the flanges, what

=E.

allows to reduce the (3); coefficient to the ratio I E 5=

As regards the indefinite equilibrium equations, which
naturaly involve al the stress components, they can be
rewritten neglecting the body forces and the pressure loads.
The system of the indefinite and boundary equilibrium
equations becomes:
divE=0
{ (4)
Zn=0

where X isthe stress tensor and n is the unit vector normal to
the section boundary (positive outwards).Concerning the
indefinite equilibrium equations, it is not necessary to satisfy
punctualy the ones in the transverse directions, as the only
relevant scaar equations, in the thin-walled beam theory, are
the x-projections of the vectoria (4). In the further hypothesis
of cylindrica body, assuming n.i=0, the equilibrium
conditions inside the body and on the boundary can be so
rewritten:
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©®)
7,,=0 VPe Fr(A)

having denoted by A the cross-section domain and by 7, the

tangential stress component, normal to the boundary.

In terms of displacements the problem (5) becomes:

0%

2~ 2~ 3 o
AT a—g—nd—3‘§— aV | vpea
an° dg X dx dx (6)
ou
% = —191(770{nz - gany) VPe FF(A)

having denoted by o, and o, the director cosines of the unit
normal vector, positive if outwards.

The axial stress field, equivaent to zero, must aso verify
the following globa conditions:

jaXdA=o

A
[onda=0 ™

A
7[ o, dA=0

The tangential stress field, instead, is related to the twist
moment sectional force by the equation:

Mt(x) = I[szn_rxyghA (8)
A
finaly becoming:
M, (x)=Gl pﬂ1+GJ[a—un—a—ug}dA 9)
AL0s 07
thanks to the following position:
|p=J'[n2+g2]dA=|g+|,7 (10)

A

Concerning the support end conditions, denoting by L the
beam length, let us suppose that the beam is “warping
clamped” at both ends — by moving constraints with 3 degrees
of freedom: the two latera displacements and the torsional
rotation, as for the bulkheads constraints of a hull module — so
obtaining:

u07,¢)=u(L,m,¢)=0; 8(0)=(L)=0 (11.1)
Mo 12 Mo (120 - Mo )2 Mo ()
o O=5 L)=0: —20)=—>()=0 (11.2)

from which it results:
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U(0.n.¢)=0(L7.¢)=0

In order to solve the problem, it is possible to preliminarily
expand the axia displacement function, the unit twist angle
and the two rigid body motion functions into appropriate
trigonometric series, verifying the conditions (11) and reduced
to their M-partiad sums, as follows:

(11.3)

mzx
u(x, W n—-
a(x7.¢)= Z (7, ¢)sin="
(12)
ZQ sm
ZB cos—
- L
m1 (13)
=ZCmcosT
m=1
The eg. (11) are implicitly satisfied ¥m=1..M .The

indefinite and boundary equations (6), thanks to the
orthogonality of the trigonometric functions, become:

2.2 3_3
VAW, = 2141) W, + 214 1) T [B, +C, ]
oW, (14
-0
an (g nanz)

Expressing the unknown mrth term W, (77, <) in the form:

Wi (7,6) = 00 (17, 6)Qm + Bin (11,6 )Biy + Y (1.6 )Cry (15)

the problem (14) can be decomposed into three Neumann
boundary problems associated to the Helmholtz equation:

2_2

Va,

0o,
oan

=2(1+v)

am
(16.1)

=60py —NCy,

mzﬂz m3 3
V2B = 204+ v)—5— B+ 21+v)—3

P _

oan

n
(16.2)

2.2 371_3

m?z m
V2 =204+ v)—5— ¥ + 21+V) R

163
W _ (16.3)

on

The first of (7) implies that the three unknown functions

an(.6), Bulng) and yy(n,6) must aso respect the
following global conditions:
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J' a,dA=0
A
[ Bnda=0 (17
J’ ydA=0
Concerning the unknown amplitudes Q,, B, ,C,,, these

ones can be determined thanks to the second and third of (7)
and the eg. (9), obtaining the equation system:

_— _
2 . max

Qm a,{[MtS‘anX

[S]-| B, |= 0 (18)

Cn, 0

specialized as follows, if it's assumed M, (x)= M, = const.:

2M; 1-cosmrz

L G mz
[S]| B, | = 0 (19)
C 0
The matrix [S] isthe following
Oy +1 Bm Vm
mz mz
Sl=| @me  Are—T"le Tme—T i (20)
mz mz
O3 ﬁmS_Tlng mS_TIn

with |
coefficients so defined (similarly for 5, and y,,):

fm = ﬂ gm_ _n}dA

Omp = _I 770’mdA

e Section product of inertia and oy, Oy L O

(21)

A
O3 = _I gor,dA
Introducing the following function F,,(77,¢):

Fol.¢)=a,2, J{ﬂm +nmJBm +(7m +gm]cm (22)
L L
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it is possible to define the bimoment as follows:

B= i Jocn Fmg(z”'g)dA 23)

m=1p m

Finally, the eg. (23) becomes:
- (1,)dA (24)
whilethe stressfield is the following one:

o mr __ max
o, = Ez_l Fm(n,g)TCOST

M
7,=G) 9% _ o +Png (e |§n™  (25)
on an L

M
T =GZ a0(’“+77 Q +a'6mB +%C sin%
Xz ag m ag m ag m L

m=1

I11. BEAM WITH MONOCONNTECTED CROSS-SECTION

In order to verify the feasibility of the applied theory and to

compare it with the classica one, an application has been

carried out for a beam already analyzed by C.J. Burgoyne and

H. Brown (e.g. [6]), faling indisputably within the thin-wall

domain. The aims of this application are;

1.to verify the convergence of the solution when the number
of harmonics increases;

2.to make a comparison on the unit-twist angle and bimoment
longitudinal distribution with the classical theory.

In Fig. 2 the section scheme is shown (all dimensions are in

mm), while the other data useful in the analysis are:

15E-05

&g n
Fig. 2 Cross-section scheme

¢ Poisson modulus Y 0.3 (stedl)
e Beam length L 3.6m
e Vertica moment of inertia l, 1.990607 E-5 m*
e Horizontal moment of inertia I, 6.581881 E-6 m*
¢ Product of inertia lpe 0
e Polar moment of inertia lp 2.648795 E-5 m*

In Fig. 3 and Fig. 4 the convergence behaviour of the unit
twist angle evaluated at x=0.1 m and x=1.8 m is shown,
verifying that in this case 200 harmonics are sufficient to
obtain a consistent solution.

Concerning the comparison with the classical Vlasov's theory,
preliminarily it is necessary to evaluate the shear center
position, located a a distance from the origin that can be
determined according to the formula:

Mg =2% = 010344 m (26)

n

having denoted by «,, the following integral:

14E-05 / e
14E-05

1.3E-05 - /
1.3E-05

11E-05

1.0E-05

=
H
m
o)
a
e e —
— . |

9.5E-06
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M

Fig. 3 Unit twist angle convergencex = 0.1 m
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Fig. 4 Unit twist angle convergencex = 1.8 m

oz = _I go,dA (27)
A

if o,(n,¢) issolution of the equation (16.1) with m=0.
Then, according to the classical theory, the unit twist angle for
M, (x) = M, = const. can be so expressed:

M, 1-coshl{y/L) _
Y= G—It{l— cosh(\/ﬁx)— Ws nh(\/ﬁ x) (28)
having done the position:
Gl,
B= - (29)

w

In eq. (29) |, is the torsional modulus, while |, is the
warping modulus, so defined for thin-walled beams:

N

| = lzhtﬁ = 7.64640E -8 m* (30)
3=

1, =J'(%_g7Q)2dA==3.51087E—8 m* (31)

A

In Fig. 6 the unit twist angle longitudinal distribution is shown
for an applied torque assumed unitary. The continuous and
dashed lines refer to the classica and exact theories,
respectively. In Fig. 7 the bimoment longitudina distribution
is aso shown: no appreciable differences are noticed between
the two theories.

Findly, in table | (see dso Fig. 5) the warping stresses in
some chosen points of the cross-section in correspondence of
the left beam end have been evaluated. In this case there is a
good agreement with the values obtained applying the
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classical theory, according to which the warping stresses can
be explicated as follows:

dg
o,=E [050 (,6)+ §77Q] (32)
dx
TABLE |
WARPING STRESSES DISTRIBUTION
O x_classical
n g O y_dassical Oy —exact ( e _ljloo
O-X—a(act
m m N/mm? N/mm?
0.0850 0.0855 0.1817 0.1868 273
00214 | 00855 | 00246 | 0.0235 168
00461 | 00855 | -01421 | -0.1442 146
00461 | 00405 | -00672 | -0.0645 419
-0.0461 0 0 0
o
() "

Fig. 5 Warping stresses distribution
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Fig. 6 Unit twist angle longitudinal distribution
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Fig. 7 Bimoment longitudinal distribution
IV. BEAM WITH PLURICONNTECTED CROSS-SECTION ¢ Horizontal moment of inertia I = 325.07m"
In the following application a simplified containership ® Product of inertia Ing =0 .
section is analyzed, in order to verify the feasibility of the * Polar moment of inertia Ip = 427-724”"'
proposed technique for the evaluation of the warping stress ® Torsional coefficient I =9.57m
fidd. Particularly, the boundary conditions (11), in e Warping coefficient I =13917 m°

correspondence of two adjacent transverse bulkheads, can be
adopted, as it is currently made in the practica scantling
procedures. The section main data are the following:

¢ Poisson modulus v =0.3 (sted)
e Beam length L =40m

o Cross section area A =250m°

o Vertica pos. of G abovebasdline zz =5.81m

e Vertica position of twist center (g =-119m

e Vertical moment of inertia l, =102.65m*
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In Fig. 8 the section scheme is presented, while in table 11 for
each branch the first node, the second node, the length and the
thickness are shown. In table 11, assuming a constant applied
torque equal to 10° kNm, the warping stresses, evauated
applying the exact theory and the refined one of Hajdin and
Kollbruner, are determined in correspondence of the left beam
end section. See also Fig. 9 for the warping stress distribution
over the cross-section, where the dashed and continuous lines
refer to the classical and exact theories, respectively.
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Fig. 8 Section scheme i | ‘
= T
TABLE Il ) ) o
SECTION GEOMETRY DATA Fig. 9 Warping stresses distribution
Branches | node 11 node t(mm) I (m)
TABLE III
1 1 2 20 4.00 WARPING STRESSES AT NODES
2 2 3 20 4.00 Exact Classical A
3 3 4 20 2.40 Oy_C —Oyx_
Nodes Oy E Oy Ix=C79%E 100
4 4 5 20 4.60 Ox-E
5 5 6 15 4.40 N/mm’ N/mm’ %
6 6 7 15 15.60 1 0.00 0.00
7 7 s 15 200 2 4.70 4.44 -5.53
10.24 : -13.
8 8 9 15 15.60 3 0 890 309
4 14.26 11.61 -18.58
° 9 10 15 260 5 25.05 1701 32.10
10 10 11 15 2.60 5 1048 04 092
11 11 12 18 2.40 7 -17.08 -19.63 14.93
12 12 13 18 4.00 8 -53.11 -26.44 -50.22
13 13 14 18 4.00 9 13.47 6.75 -49.89
14 1 14 15 1.80 10 -9.73 3.92 -140.29
15 2 13 15 1.80 u 5.28 885 6761
12 2.16 6.83 216.20
16 3 12 15 1.80
13 0.77 342 344.16
17 4 11 15 1.80 " 0.00 0.00
18 6 9 15 2.00

From Fig. 9 it's clear that the warping stress distribution
over each branch isn't linear, as some stress concentrations
arise, especialy in correspondence of the intersections
between branches.

Concerning the hull girder yielding check, for ships
having large openings in the strength deck, its' well known
that the normal stresses induced by torque, vertica and
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horizontal bending moments have to be superimposed, by
means of appropriate combination factors. The maximum
warping stress values are reached in correspondence of the
bottom-side and deck-inner side intersections, where the
stresses induced by vertical and horizontal bending
moments become maximum, too. From the anaysis, the
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following results have been obtained a the above
mentioned intersections:

- Bottom-side: o, . =25.05 N/mm*=150,

- Deck-inner side: o, . =53.11 N/mm’ =200, .
Denoting by o the combined verticadl and horizontal
bending moment stress, the total primary one, obtained

adopting for the warping part the classica and the exact
theories, respectively, can be so expressed:

0,=0,+0, ¢ (33)

*

0, =0z+0, ¢ (34)
Thanks to the positions: o, ¢ = f.0, . and o, . =00,
the following percentage variation, as regards o, is
obtained:

A=21"%100= o (. ~1)-100
21

(35)

sothat for any . >1, o, isunderestimated as regards o, ,
which is potentially higher than the admissible stress. For
example, if o =0.20, assuming at bottom-side 3. =1.5
and at deck-inner side 3. =20, the relative percentage
variations, as regards o;, ae A=10% and A=20%,
respectively.

V. CONCLUSIONS

In this paper a new theory for the non-uniform torsion of
beams with asymmetric cross-section has been adopted.
Despite of the classica theories, it isn't necessary to
introduce the concept of afixed center of twist, so regarding
the non-uniform torsion as a combined flexure/torque
problem. The displacement field has been developed into
appropriate trigonometric series, so obtaining a generalized
warping function that fully respects the first indefinite
equilibrium equation. As the warping displacement and the
unit twist angle functions have been developed into Fourier
series, directly satisfying the beam boundary conditions, it
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isn't necessary to impose the classica warping differential
equation, too.

Two numerical examples have been proposed, in order to

highlight the feasibility of the proposed theory and to
compare it with the classical one.
Particularly, the first example, relative to an open profile,
has been caried out in order to test the applied FE
numerica procedure. The second one, instead, is relative to
a simplified containership section, regarded as restrained
against torsion in correspondence of two adjacent
bulkheads. Particularly, it has been verified that the
maximum warping stress values at bottom and deck are
higher than the ones evaluated applying the classical theory,
so that an appreciabl e influence on the hull girder scantling,
arise.

Obviously, other examples are necessary to test the
method and verify the effective influence of the exact non-
uniform torsion theory on the scantling procedures. these
problems will be the subjects of future works.
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