Search results for: Computational Modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3032

Search results for: Computational Modeling

2882 Therapeutic Product Preparation Bioprocess Modeling

Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu

Abstract:

An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.

Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
2881 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Authors: S. A. Sadegh Zadeh, C. Kambhampati

Abstract:

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

Keywords: All-or-none, computational modelling, mathematical model, transmembrane voltage, action potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
2880 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4052
2879 New Approach for the Modeling and the Implementation of the Object-Relational Databases

Authors: Amel Grissa-Touzi, Minyar Sassi

Abstract:

Conception is the primordial part in the realization of a computer system. Several tools have been used to help inventors to describe their software. These tools knew a big success in the relational databases domain since they permit to generate SQL script modeling the database from an Entity/Association model. However, with the evolution of the computer domain, the relational databases proved their limits and object-relational model became used more and more. Tools of present conception don't support all new concepts introduced by this model and the syntax of the SQL3 language. We propose in this paper a tool of help to the conception and implementation of object-relational databases called «NAVIGTOOLS" that allows the user to generate script modeling its database in SQL3 language. This tool bases itself on the Entity/Association and navigational model for modeling the object-relational databases.

Keywords: Abstract Data Table, Navigational model, Objectrelational databases, References.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
2878 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications

Authors: Anwar H. Jarndal, Ahmed S. Elwakil

Abstract:

In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.

Keywords: Fractional-order modeling, GaN HEMT, Si-substrate, open de-embedding structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
2877 The Role of Contextual Ontologies in Enterprise Modeling

Authors: Ahmed Arara

Abstract:

Information sharing and exchange, rather than information processing, is what characterizes information technology in the 21st century. Ontologies, as shared common understanding, gain increasing attention, as they appear as the most promising solution to enable information sharing both at a semantic level and in a machine-processable way. Domain Ontology-based modeling has been exploited to provide shareability and information exchange among diversified, heterogeneous applications of enterprises. Contextual ontologies are “an explicit specification of contextual conceptualization". That is: ontology is characterized by concepts that have multiple representations and they may exist in several contexts. Hence, contextual ontologies are a set of concepts and relationships, which are seen from different perspectives. Contextualization is to allow for ontologies to be partitioned according to their contexts. The need for contextual ontologies in enterprise modeling has become crucial due to the nature of today's competitive market. Information resources in enterprise is distributed and diversified and is in need to be shared and communicated locally through the intranet and globally though the internet. This paper discusses the roles that ontologies play in an enterprise modeling, and how ontologies assist in building a conceptual model in order to provide communicative and interoperable information systems. The issue of enterprise modeling based on contextual domain ontology is also investigated, and a framework is proposed for an enterprise model that consists of various applications.

Keywords: Contextual ontologies, Enterprise model, domainontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
2876 Hybrid Modeling and Optimal Control of a Two-Tank System as a Switched System

Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh

Abstract:

In the past decade, because of wide applications of hybrid systems, many researchers have considered modeling and control of these systems. Since switching systems constitute an important class of hybrid systems, in this paper a method for optimal control of linear switching systems is described. The method is also applied on the two-tank system which is a much appropriate system to analyze different modeling and control techniques of hybrid systems. Simulation results show that, in this method, the goals of control and also problem constraints can be satisfied by an appropriate selection of cost function.

Keywords: Hybrid systems, optimal control, switched systems, two-tank system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2875 Generalized Exploratory Model of Human Category Learning

Authors: Toshihiko Matsuka

Abstract:

One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.

Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2874 Average Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects

Authors: Ki-Young Kim, Jae-Ho Lim, Deok-Min Kim, Seok-Yoon Kim

Abstract:

Average current analysis checking the impact of current flow is very important to guarantee the reliability of semiconductor systems. As semiconductor process technologies improve, the coupling capacitance often become bigger than self capacitances. In this paper, we propose an analytic technique for analyzing average current on interconnects in multi-conductor structures. The proposed technique has shown to yield the acceptable errors compared to HSPICE results while providing computational efficiency.

Keywords: current moment, interconnect modeling, reliability analysis, worst-case switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
2873 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5674
2872 Modeling UWSN Simulators – A Taxonomy

Authors: Christhu Raj, Rajeev Sukumaran

Abstract:

In this research article of modeling Underwater Wireless Sensor Network Simulators, we provide a comprehensive overview of the various currently available simulators used in UWSN modeling. In this work, we compare their working environment, software platform, simulation language, key features, limitations and corresponding applications. Based on extensive experimentation and performance analysis, we provide their efficiency for specific applications. We have also provided guidelines for developing protocols in different layers of the protocol stack, and finally these parameters are also compared and tabulated. This analysis is significant for researchers and designers to find the right simulator for their research activities.

Keywords: Underwater Wireless Sensor networks (UWSN), SUNSET, NS2, OPNET, WOSS, DESERT, RECORDS, Aqua- Sim, Aqua- Net Mate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
2871 A Timed and Colored Petri Nets for Modeling and Verifying Cloud System Elasticity

Authors: W. Louhichi, M.Berrima, N. Ben Rajeb Robbana

Abstract:

Elasticity is the essential property of cloud computing. As the name suggests, it constitutes the ability of a cloud system to adjust resource provisioning in relation to fluctuating workloads. There are two types of elasticity operations, vertical and horizontal. In this work, we are interested in horizontal scaling, which is ensured by two mechanisms; scaling in and scaling out. Following the sizing of the system, we can adopt scaling in the event of over-supply and scaling out in the event of under-supply. In this paper, we propose a formal model, based on temporized and colored Petri nets (TdCPNs), for the modeling of the duplication and the removal of a virtual machine from a server. This model is based on formal Petri Nets (PNs) modeling language. The proposed models are edited, verified, and simulated with two examples implemented in colored Petri nets (CPNs)tools, which is a modeling tool for colored and timed PNs.

Keywords: Cloud computing, elasticity, elasticity controller, petri nets, scaling in, scaling out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
2870 Dynamic Modeling and Simulation of Threephase Small Power Induction Motor

Authors: Nyein Nyein Soe, Thet Thet Han Yee, Soe Sandar Aung

Abstract:

This paper is proposed the dynamic simulation of small power induction motor based on Mathematical modeling. The dynamic simulation is one of the key steps in the validation of the design process of the motor drive systems and it is needed for eliminating inadvertent design mistakes and the resulting error in the prototype construction and testing. This paper demonstrates the simulation of steady-state performance of induction motor by MATLAB Program Three phase 3 hp induction motor is modeled and simulated with SIMULINK model.

Keywords: Squirrel cage induction motor, modeling andsimulation, MATLAB software, torque, speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4517
2869 Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins

Authors: Ewa Wywial, Shaneen M. Singh

Abstract:

The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.

Keywords: PRAF proteins, homology modeling, Arabidopsisthaliana

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
2868 A Novel Method for Behavior Modeling in Uncertain Information Systems

Authors: Ali Haroonabadi, Mohammad Teshnehlab

Abstract:

None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.

Keywords: Fuzzy System, Software Development Model, Software Performance Evaluation, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
2867 A General Framework for Modeling Replicated Real-Time Database

Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan

Abstract:

There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.

Keywords: Database modeling, Distributed database, Real time databases, Replication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
2866 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Forecasting, Gaussian process, modeling, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
2865 A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract:

We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2864 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), Modeling, Multi-phase, Transport Phenomena, Lithium-air battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
2863 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches

Authors: Suhas K, Sripadaraja K

Abstract:

This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.

Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
2862 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: Monomial form, rectangular surfaces, CAGD curves, monomial matrix applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
2861 Universal Kinetic Modeling of RAFT Polymerization using Moment Equations

Authors: Mehdi Salami-Kalajahi, Pejman Ganjeh-Anzabi, Vahid Haddadi-Asl, Mohammad Najafi

Abstract:

In the following text, we show that by introducing universal kinetic scheme, the origin of rate retardation and inhibition period which observed in dithiobenzoate-mediated RAFT polymerization can be described properly. We develop our model by utilizing the method of moments, then we apply our model to different monomer/RAFT agent systems, both homo- and copolymerization. The modeling results are in an excellent agreement with experiments and imply the validity of universal kinetic scheme, not only for dithiobenzoate-mediated systems, but also for different types of monomer/RAFT agent ones.

Keywords: RAFT Polymerization, Mechanism, Kinetics, Moment Equations, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2860 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar

Abstract:

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2859 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.

Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
2858 Cosastudio: A Software Architecture Modeling Tool

Authors: Adel Smeda, Adel Alti, Mourad Oussalah, Abdallah Boukerram

Abstract:

A key aspect of the design of any software system is its architecture. An architecture description provides a formal model of the architecture in terms of components and connectors and how they are composed together. COSA (Component-Object based Software Structures), is based on object-oriented modeling and component-based modeling. The model improves the reusability by increasing extensibility, evolvability, and compositionality of the software systems. This paper presents the COSA modelling tool which help architects the possibility to verify the structural coherence of a given system and to validate its semantics with COSA approach.

Keywords: Software Architecture, Architecture Description Languages, UML, Components, Connectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
2857 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
2856 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
2855 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: Cantilever Retaining Wall, Physical Modeling, Minimization of Moment Ratio Method, Pivot Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2854 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: Ultrasound, mechanical index, modeling, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
2853 CFD Modeling of Reduction in NOX Emission Using HiTAC Technique

Authors: Abbas Khoshhal, Masoud Rahimi, Sayed Reza Shabanian, Ammar Abdulaziz Alsairafi

Abstract:

In the present study, the rate of NOx emission in a combustion chamber working in conventional combustion and High Temperature Air Combustion (HiTAC) system are examined using CFD modeling. The effect of peak temperature, combustion air temperature and oxygen concentration on NOx emission rate was undertaken. Results show that in a fixed oxygen concentration, increasing the preheated air temperature will increase the peak temperature and NOx emission rate. In addition, it was observed that the reduction of the oxygen concentration in the fixed preheated air temperature decreases the peak temperature and NOx emission rate. On the other hand, the results show that increase of preheated air temperature at various oxygen concentrations increases the NOx emission rate. However, the rate of increase in HiTAC conditions is quite lower than the conventional combustion. The modeling results show that the NOx emission rate in HiTAC combustion is 133% less than that of the conventional combustion.

Keywords: CFD Modeling, HiTAC, NOx, Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909