Search results for: Type I error.
1715 Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete
Authors: A. P. Singh
Abstract:
The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes.
Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.
Keywords: Permeability, grade of concrete, fibre shape, fibre content, curing age, steady state, Darcy’s law, method of penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30901714 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode
Authors: Jiri Sebesta
Abstract:
Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.
Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26351713 Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation
Authors: M. Zarebnia, S. Khani
Abstract:
In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.
Keywords: Hammerstein integral equations, quasi-interpolation, Nystrom’s method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44861712 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.
Keywords: 3D QSAR, CoMSIA, Triazoles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861711 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed N. Alsulami, Asma F. Aldosseri, Ahmed S. Ezziden, Abdulrahman K. Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding to the medication administration process should be improved.
Keywords: Double checking, Medication administration errors, Medication safety, Nurses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28321710 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23421709 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: Black Sea hydrates, depressurization, turbidites, HydrateResSim.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13651708 MPSO based Model Order Formulation Technique for SISO Continuous Systems
Authors: S. N. Deepa, G. Sugumaran
Abstract:
This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881707 Labyrinth Fractal on a Convex Quadrilateral
Authors: Harsha Gopalakrishnan, Srijanani Anurag Prasad
Abstract:
Quadrilateral Labyrinth Fractals are a type of fractals presented in this paper. They belong to a unique class of fractals on any plane quadrilateral. The previously researched labyrinth fractals on the unit square and triangle inspire this form of fractal. This work describes how to construct a quadrilateral labyrinth fractal and looks at the circumstances in which it can be understood as the attractor of an iterated function system. Furthermore, some of its topological properties and the Hausdorff and box-counting dimensions of the quadrilateral labyrinth fractals are studied.
Keywords: Fractals, labyrinth fractals, dendrites, iterated function system, non-self similar, non-self affine, connected, path connected.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891706 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.
Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6021705 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22061704 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591703 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241702 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10101701 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22141700 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22121699 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.
Keywords: Beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561698 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations
Authors: Javad Abdalkhani
Abstract:
Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161697 Innovation in “Low-Tech” Industries: Portuguese Footwear Industry
Authors: António Marques, Graça Guedes
Abstract:
The Portuguese footwear industry had in the last five years a remarkable performance in the exportation values, the trade balance and others economic indicators. After a long period of difficulties and with a strong reduction of companies and employees since 1994 until 2009, the Portuguese footwear industry changed the strategy and is now a success case between the international players of footwear. Only the Italian industry sells footwear with a higher value than the Portuguese and the distance between them is decreasing year by year. This paper analyses how the Portuguese footwear companies innovate and make innovation, according the classification proposed by the Oslo Manual. Also, analyses the strategy follow in the innovation process and shows the linkage between the type of innovation and the strategy of innovation. The research methodology was qualitative and the strategy for data collection was the case study. The qualitative data will be analyzed with the MAXQDA software. The economic results of the footwear companies studied shows differences between all of them and these differences are related with the innovation strategy adopted. The companies focused in product and marketing innovation, oriented to their target market, have higher ratios “turnover per worker” than the companies focused in process innovation. However, all the footwear companies in this “low-tech” industry create value and contribute to a positive foreign trade of 1.310 million euros in 2013. The growth strategies implemented has the participation of the sectorial organizations in several innovative projects. And it’s obvious that cooperation between all of them is a critical element to the performance achieved by the companies and the innovation observed. The Portuguese footwear sector has in the last years an excellent performance (economic results, exportation values, trade balance, brands and international image) and his performance is strongly related with the strategy in innovation followed, the type of innovation and the networks in the cluster. A simplified model, called “Ace of Diamonds”, is proposed by the authors and explains the way how this performance was reached by the seven companies that participate in the study (two of them are the leaders in the setor), and if this model can be used in others traditional and “low-tech” industries.
Keywords: Footwear industry, innovation strategy, low-tech industry, Oslo Manual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721696 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics
Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez
Abstract:
This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.Keywords: Kinematics, degree of freedom, optimization, robot manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61101695 Compact Planar Antenna for UWB Applications
Authors: Rezaul Azim, Mohammad Tariqul Islam, Norbahiah Misran
Abstract:
In this paper, a planar antenna for UWB applications has been proposed. The antenna consists of a square patch, a partial ground plane and a slot on the ground plane. The proposed antenna is easy to be integrated with microwave circuitry for low manufacturing cost. The flat type antenna has a compact structure and the total size is 14.5×14.5mm2. The result shows that the impedance bandwidth (VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44 GHz), which is equivalent to 135.8%. Details of the proposed compact planar UWB antenna design is presented and discussed.Keywords: Planar antenna, partial ground plane, ultrawideband(UWB) antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27441694 Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers
Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani
Abstract:
We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.
Keywords: Cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321693 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.
Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551692 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11021691 A New Intelligent, Dynamic and Real Time Management System of Sewerage
Authors: R. Tlili Yaakoubi, H. Nakouri, O. Blanpain, S. Lallahem
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.Keywords: Automation, optimization, paradigm, RTC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941690 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines
Authors: Gulshan Sharma
Abstract:
This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.
Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8291689 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs
Authors: S. Mohideen Badhusha, K. Duraiswamy
Abstract:
Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891688 A Variable Structure MRAC for a Class of MIMO Systems
Authors: Ardeshir Karami Mohammadi
Abstract:
A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15831687 Attenuation in Transferred RF Power to a Biomedical Implant due to the Absorption of Biological Tissue
Authors: Batel Noureddine, Mehenni Mohamed, Kouadik Smain
Abstract:
In a transcutanious inductive coupling of a biomedical implant, a new formula is given for the study of the Radio Frequency power attenuation by the biological tissue. The loss of the signal power is related to its interaction with the biological tissue and the composition of this one. A confrontation with the practical measurements done with a synthetic muscle into a Faraday cage, allowed a checking of the obtained theoretical results. The supply/data transfer systems used in the case of biomedical implants, can be well dimensioned by taking in account this type of power attenuation.Keywords: Biological tissue, coupled coils, implanted device, power attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23311686 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: Microwave filter, scattering parameter (s-parameter), coupling matrix, intelligent tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325