{"title":"Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation","authors":"M. Zarebnia, S. Khani","volume":76,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":716,"pagesEnd":720,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/16795","abstract":"

In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.<\/p>\r\n","references":"

 Akbar H.Borzabadi and Omid S. Fard,A Numerical scheme for a class\r\nof nonlinear Fredholm integral equation of the second kind, Journal of\r\nComputational and Applied Mathematics 232(2009)449 \u2212 454.\r\n K.E. Atkinson, The numerical solution of integral equation of the second\r\nkind, Cambridge University press, 1997.\r\n L.M. Delves and J.L. Mohamed, Computational methods for integral\r\nequation, Cambridge University press, 1985.\r\n L.M. Delves and J. Wash, Numerical solution of integral equation,\r\nOxford University press, 1974.\r\n M. Javidi and A. Galbabai, Modified homotopy perturbation method\r\nfor solving non-linear Fredholm integral equations, Chaos, Solitons and\r\nFractals. 40(2009)1408 \u2212 1412.\r\n R. Kress, Linear Integral Equations, 2nd ed., Springer, Berlin, 1999.\r\n V. Maz\u2019ya, A new approximation method and its applications to the\r\ncalculation of volume potentials, boundary point method. in: 3. DFGKolloquium\r\ndes DFG-Forschungsschwerpunktes Randelementmethoden,\r\n1991.\r\n V. Maz\u2019ya, G. Schmidt, On approximate approximations using Gaussian\r\nKernels, IMA J. Num. Anal. 16(1996)13 \u2212 29.\r\n V. Maz\u2019ya, G. Schmidt, Approximate Approximations, Mathematical\r\nSurveys and Monographs, vol. 141, AMS, 2007.\r\n F. Muller and W. Varhorn, On approximation and numerical solution\r\nof Fredholm interal equation of second kind using quasi-interpolation,\r\nApplied Mathematics and Computation 217(2011)6409 \u2212 6416.<\/p>\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 76, 2013"}