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Abstract—Quadrilateral Labyrinth Fractals are a type of fractals
presented in this paper. They belong to a unique class of fractals on
any plane quadrilateral. The previously researched labyrinth fractals
on the unit square and triangle inspire this form of fractal. This work
describes how to construct a quadrilateral labyrinth fractal and looks
at the circumstances in which it can be understood as the attractor
of an iterated function system. Furthermore, some of its topological
properties and the Hausdorff and box-counting dimensions of the
quadrilateral labyrinth fractals are studied.

Keywords—Fractals, labyrinth fractals, dendrites, iterated function
system, non-self similar, non-self affine, connected, path connected.

I. INTRODUCTION

LABYRINTH fractals are a type of Sierpinski carpet

in the plane. Cristea and Steinsky [1], [2] introduced

labyrinth fractals on a unit square in a plane. In the same

work, they also explored Hausdorff dimensions and a few

topological properties. Labyrinth sets that meet tree, exit, and

corner parameters are the building blocks for labyrinth fractals.

Triangular labyrinth fractals are a related idea that Cristea and

Paul Surer [3] introduced, wherein two triangle pattern systems

form the foundation for fractal construction. As a result,

two fractals are produced. Labyrinth fractals are self-similar

dendrites in both square and triangular cases. The ideas around

labyrinth fractals on the unit square were expanded upon

in several ways, including creating mixed and super-mixed

labyrinth fractals [4], [5]. A series of labyrinth patterns are

used to create mixed labyrinth fractals. i.e., different patterns

are used at various iteration phases. Super-mixed labyrinth

fractals employ a finite array of patterns at every iteration

step. Labyrinth fractals that are mixed or super-mixed typically

aren’t self-similar.
Introduced by Cristea and Stiensky, the classical labyrinth

fractal on a square has many uses in physics, including

the fractal reconstruction of complex images, signals,

and radar backgrounds [6], planar nanostructures [7], and

the construction of prototypes of ultra-wide-band radar

antennas [8]. In telecommunication, fractal labyrinths and

genetic algorithms are coupled to synthesise large, resilient

antenna arrays and nanoantennas [9].
The labyrinth fractal can be extended to any convex

quadrilateral in a plane. Quadrilaterals do not exhibit

self-similarity when split into smaller quadrilaterals, in

contrast to the creation of labyrinth fractals in squares and

triangles. Therefore, self-similarity cannot exist in this class of

fractals. As a result, it is fascinating to investigate the labyrinth

fractal on a convex quadrilateral, which has the same qualities

as the square and triangle cases but lacks similarity at each

stage of development.
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The first task in the paper is to build a fractal on a convex

quadrilateral in Section II. Instead of similar quadrilaterals, the

produced set is a set of similar quadrilaterals with two types

of parallelograms at each stage of construction. This section

also includes some preliminary results. This study defines

labyrinth fractals on convex quadrilaterals and discusses their

fundamental characteristics in Section III. The concept aligns

precisely with the earlier definitions for triangles and squares,

i.e., the quadrilateral labyrinth satisfies the corner, exit, and

tree properties. Specific requirements on quadrilaterals are

derived in Section IV so that the maps that generate the

quadrilateral labyrinth fractal form an iterated function system.

The box-counting dimension of quadrilateral labyrinth fractals

is covered in Section V. The fundamental definition is used

to find the dimension. The Hausdorff dimension of the

quadrilateral labyrinth fractals is provided in Section VI. In

Section VII, the topological features are discussed. In addition

to the topological characteristics of the labyrinth fractal itself,

the work addresses the topological qualities of complements

of labyrinths on the quadrilaterals, which was not studied in

the case of squares and triangles.

When self-similarity is absent, the labyrinth fractal in the

convex quadrilateral can be used. In any real-life setting, the

basic framework of the research does not have to be square

or triangle-shaped. The labyrinth fractal on the quadrilateral

can be employed in this scenario because it works with any

four-sided convex polygon in a plane.

II. CONSTRUCTION OF FRACTAL

This section describes the construction of a fractal

on any convex quadrilateral on a plane. A few initial

construction-related outcomes are also demonstrated. These

findings will aid in the proof of different theorems in

subsequent sections.

On a plane, let Q be a convex quadrilateral. Using the

quadrilateral’s smallest diagonal (or any of them if they are

equal diagonals), the quadrilateral is divided into two triangles.

This diagonal is referred to as the common side for the

resulting triangles. For the triangles that result, the common

points are the ends of the common side. The quadrilateral is

designated as follows: Moving anticlockwise, the vertices of Q
are denoted as Q1, Q2, Q3, and Q4, respectively, starting from

any of the common points (see Fig. 1). So, Δ1 = Q1Q2Q3

and Δ2 = Q3Q4Q1 are the triangles that result from the

quadrilateral Q = Q1Q2Q3Q4.

If x ∈ Q then x ∈ Δ1 or x ∈ Δ2. Suppose x ∈ Δ1. Then

x = α1Q1 + α2Q2 + α3Q3 is the unique representation in

Δ1, with α1 + α2 + α3 = 1 and α1, α2, α3 ≥ 0. So, x =
α1Q1 +α2Q2 +α3Q3 +0Q4 uniquely represents the point x
in Q. Similarly, suppose x ∈ Δ2. Then x = α3Q3 + α4Q4 +
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Fig. 1 An example of the naming of a quadrilateral

α1Q1 is the unique representation in Δ2, with α3 + α4 +
α1 = 1 and α3, α4, α1 ≥ 0. So, x = α1Q1 + 0Q2 + α3Q3 +
α4Q4 gives a unique representation of x in Q. The definitions

above coincide when x lies on the line Q1Q3. Since αi is the

coefficient of Qi, each x ∈ Q can be uniquely represented

as (α1, α2, α3, α4), where i = 1, 2, 3, 4, as in the previous

representation, with either α2 = 0 or α4 = 0.

Definition 1: Let Q = Q1Q2Q3Q4 and R = R1R2R3R4

be two convex quadrilaterals. Define the map PR : Q → R as

PR(x) = α1R1+α2R2+α3R3+α4R4, where (α1, α2, α3, α4)
is the unique representation of x in Q.

Let X and Y be two topological spaces. A homeomorphism

from X to Y is a bijection f : X → Y such that both f and

f−1 are continuous.

Proposition 1: Let R = R1R2R3R4 be a convex

quadrilateral inside a convex quadrilateral Q = Q1Q2Q3Q4.

When (α1, α2, α3, α4) is the unique representation of x in Q,

then the map PR : Q → R given by PR(x) = α1R1+α2R2+
α3R3 + α4R4 is a homeomorphism between Q and R.

Proof: Let PR(x) = PR(y) for x, y ∈ Q
with (α1, α2, α3, α4) and (β1, β2, β3, β4) as the unique

representation of x and y in Q respectively.

Case 1: x ∈ Δ1 = Q1Q2Q3 and y ∈ Δ2 = Q1Q3Q4.

In this case, x = (α1, α2, α3, 0) and y = (β1, 0, β3, β4)
in Q. So PR(x) = PR(y) in R gives (α1, α2, α3, 0) =
(β1, 0, β3, β4). Thus α1 = β1, α2 = 0, α3 = β3, β4 = 0
and so x = y and lies on the line joining Q1 and Q3.

Case 2: x, y ∈ Δ1 = Q1Q2Q3 or x, y ∈ Δ2 = Q3Q4Q1

In this case, x = (α1, α2, α3, 0) and y = (β1, β2, β3, 0)
or x = (α1, 0, α3, α4) and y = (β1, 0, β3, β4) in Q. So

PR(x) = PR(y) in R gives (α1, α2, α3, 0) = (β1, β2, β3, 0)
or (α1, 0, α3, α4) = (β1, 0, β3, β4). In either case αi = βi for

i = 1, 2, 3, 4 and so x = y.

Consequently, PR is injective. Surjectivity derives from the

definition of PR; hence, PR is a bijection.

Consider a sequence (xn) = α1nQ1 + α2nQ2 + α3nQ3 +
α4nQ4 in Q that converges to x = α1Q1 + α2Q2 + α3Q3 +
α4Q4 in Q. Then (α1n, α2n, α3n, α4n) is a sequence in R4

converging to (α1, α2, α3, α4) in R4 which gives (αin) → αi

for i = 1, 2, 3, 4. Therefore, (α1nR1 + α2nR2 + α3nR3 +
α4nR4) → α1R1 + α2R2 + α3R3 + α4R4. As a result, PR

is continuous since PR(xn) → PR(x). Similarly, (PR)
−1 is

likewise continuous. Consequently, PR is a homeomorphism.

For m ≥ 2, consider the sets

A1 = {(k1, k2, k3, k4) ∈ (N ∪ {0})4 : k1 + k2 + k3 = m− 1,

k4 = 0 and k2 �= 0}
A2 = {(k1, k2, k3, k4) ∈ (N ∪ {0})4 : k1 + k3 + k4 = m− 1,

k2 = 0 and k4 �= 0}
A3 = {(k1, k2, k3, k4) ∈ (N ∪ {0})4 : k1 + k3 = m − 1 and

k2 = k4 = 0}.

Let

A = A1 ∪A2 ∪A3 (1)

Define a function Sm on A as

Sm(k1, k2, k3, k4) = R1R2R3R4, where

R1 =
(k1 + 1)Q1 + k2Q2 + k3Q3 + k4Q4

m
,

R2 =
k1Q1 + (k2 + 1)Q2 + k3Q3 + k4Q4

m
,

R3 =
k1Q1 + k2Q2 + (k3 + 1)Q3 + k4Q4

m
,

R4 =
(k1 + 1)Q1 + (k2 − 1)Q2 + (k3 + 1)Q3 + k4Q4

m
if (k1, k2, k3, k4) ∈ A1

R1 =
(k1 + 1)Q1 + k2Q2 + k3Q3 + k4Q4

m
,

R2 =
(k1 + 1)Q1 + k2Q2 + (k3 + 1)Q3 + (k4 − 1)Q4

m
,

R3 =
k1Q1 + k2Q2 + (k3 + 1)Q3 + k4Q4

m
,

R4 =
k1Q1 + k2Q2 + k3Q3 + (k4 + 1)Q4

m
if (k1, k2, k3, k4) ∈ A2,

R1 =
(k1 + 1)Q1 + k2Q2 + k3Q3 + k4Q4

m
,

R2 =
k1Q1 + (k2 + 1)Q2 + k3Q3 + k4Q4

m
,

R3 =
k1Q1 + k2Q2 + (k3 + 1)Q3 + k4Q4

m
,

R4 =
k1Q1 + k2Q2 + k3Q3 + (k4 + 1)Q4

m
if (k1, k2, k3, k4) ∈ A3.

Then Sm(k1, k2, k3, k4) are parallelograms in Q for

(k1, k2, k3, k4) ∈ A1 ∪ A2. For (k1, k2, k3, k4) ∈ A3,

Sm(k1, k2, k3, k4) are quadrilaterals in Q which are similar

to Q.

Let Sm = Sm(A1) ∪ Sm(A2) ∪ Sm(A3). The

corner quadrilaterals are the members of the set C =
{Sm(m − 1, 0, 0, 0), Sm(0,m − 1, 0, 0), Sm(0, 0,m −
1, 0), Sm(0, 0, 0,m − 1)} ⊆ Sm. Border quadrilaterals are

those elements Sm(k1, k2, k3, k4) in Sm, which has at most

two of the ki’s as nonzero.

Now choose a subset W1 of Sm, which is called the

set of white quadrilaterals of order 1 and B1 = Sm \ W1

is called the set of black quadrilaterals of order 1. For

n ≥ 2, the set of white quadrilaterals of order n is given
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by Wn = {PWn−1
(W1) : W1 ∈ W1,Wn−1 ∈ Wn−1}. Then

Wn ⊂ Smn and the set of black squares of order n is given

by Bn = Smn \Wn. For n ≥ 1, define Ln =
⋃

W∈Wn

W. Since

each Ln is closed and bounded, Ln is compact. Thus, {Ln}
is a monotonically decreasing sequence of compact sets. The

fractal set in Q is defined as L∞ =
∞⋂

n=1
Ln.

Proposition 2: Let Q = Q1Q2Q3Q4 be a convex

quadrilateral, and Sm be defined as above for any m ≥ 2.

Then

PQ′ ◦PQ′′ = PS in Q, where S = PQ′(Q′′) and Q′′ ∈ Sn for

any n ≥ m.

Proof: Let Q′ = R1R2R3R4 and Q′′ = T1T2T3T4.

Suppose Ti = αi
1Q1 + αi

2Q2 + αi
3Q3 + αi

4Q4 is the unique

representation of Ti in Q for i = 1, 2, 3, 4. Choose x ∈ Q.

WLOG suppose that x ∈ Δ1 and let x = β1Q1 + β2Q2 +
β3Q3 + 0Q4 be the unique representation of x in Q.

Case 1: Q′′ in Δ1. In this case, αi
4 = 0 for all i = 1, 2, 3, 4.

Then,

PQ′ ◦ PQ′′(x) = PQ′ ◦ PQ′′(β1Q1 + β2Q2 + β3Q3)

= PQ′(β1T1 + β2T2 + β3T3)

= PQ′(β1(α
1
1Q1 + α1

2Q2 + α1
3Q3)

+ β2(α
2
1Q1 + α2

2Q2 + α2
3Q3)

+ β3(α
3
1Q1 + α3

2Q2 + α3
3Q3))

= PQ′((β1α
1
1 + β2α

2
1 + β3α

3
1)Q1

+ (β1α
1
2 + β2α

2
2 + β3α

3
2)Q2

+ (β1α
1
3 + β2α

2
3 + β3α

3
3)Q3)

= (β1α
1
1 + β2α

2
1 + β3α

3
1)R1

+ (β1α
1
2 + β2α

2
2 + β3α

3
2)R2

+ (β1α
1
3 + β2α

2
3 + β3α

3
3)R3

In the above step, we can apply PQ′ since the sum of

coefficients of Q′
is are 1, and the coefficient of Q4 is zero.

The vertices of S are

S1 = PQ′(T1) = PQ′(α1
1Q1 + α1

2Q2 + α1
3Q3)

= α1
1R1 + α1

2R2 + α1
3R3

S2 = PQ′(T2) = PQ′α2
1Q1 + α2

2Q2 + α2
3Q3)

= α2
1R1 + α2

2R2 + α2
3R3

S3 = PQ′(T3) = PQ′(α3
1Q1 + α3

2Q2 + α3
3Q3)

= α3
1R1 + α3

2R2 + α3
3R3

S4 = PQ′(T4) = PQ′(α4
1Q1 + α4

2Q2 + α4
3Q3)

= α4
1R1 + α4

2R2 + α4
3R3

Thus,

PS(x) = PS(β1Q1 + β2Q2 + β3Q3)

= β1S1 + β2S2 + β3S3

= β1(α
1
1R1 + α1

2R2 + α1
3R3)

+ β2(α
2
1R1 + α2

2R2 + α2
3R3)

+ β3(α
3
1R1 + α3

2R2 + α3
3R3)

= (β1α
1
1 + β2α

2
1 + β3α

3
1)R1

+ (β1α
1
2 + β2α

2
2 + β3α

3
2)R2

+ (β1α
1
3 + β2α

2
3 + β3α

3
3)R3

= PQ′ ◦ PQ′′(x)

Case 2: Q′′ in Δ2. In this case αi
2 = 0 for all i = 1, 2, 3, 4

and PQ′ ◦ PQ′′(x) = PS(x) follows same as in case 1.

Case 3: Q′′ along diagonal. Here α1
2 = α1

4 = 0,

α3
2 = α3

4 = 0, α2
4 = 0 and α4

2 = 0. In this case also,

PQ′ ◦ PQ′′(x) = PS(x) follows same as in case 1.

Remark 1: In Proposition 2, the position of Q′ does not

matter in the calculation.

Remark 2: Proposition 2 is valid only if Q′′ ∈ Sm.

Let Q = Q1Q2Q3Q4, where Q1 = (0, 1), Q2 = (0, 0),
Q3 = (1, 0) and Q4 = (1, 1) and Q′ = R1R2R3R4, where

R1 = (0, 1
4 ), R2 = (0, 0), R3 = ( 14 , 0) and R4 = ( 14 ,

1
4 )

and Q′′ = T1T2T3T4, where T1 = ( 24 ,
3
4 ), T2 = ( 14 ,

1
4 ), T3 =

( 34 ,
1
4 ) and T4 = ( 34 ,

3
4 ). Then,

T1 =
1

2
(0, 1) + 0(0, 0) +

1

4
(1, 0) +

1

4
(1, 1)

T2 =
1

4
(0, 1) +

1

2
(0, 0) +

1

4
(1, 0) + 0(1, 1)

T3 =
1

4
(0, 1) + 0(0, 0) +

3

4
(1, 0) + 0(1, 1)

T4 =
1

4
(0, 1) + 0(0, 0) +

1

4
(1, 0) +

1

2
(1, 1)

Let x = ( 12 ,
1
4 ) =

1
4 (0, 1) +

1
4 (0, 0) +

1
2 (1, 0) + 0(1, 1) ∈ Q

Hence,

PQ′ ◦ PQ′′(x) = PQ′(PQ′′(
1

4
(0, 1) +

1

4
(0, 0) +

1

2
(1, 0) + 0(1, 1)))

= PQ′(
1

4
(
2

4
,
3

4
) +

1

4
(
1

4
,
1

4
) +

1

2
(
3

4
,
1

4
) + 0(

3

4
,
3

4
))

= PQ′(
5

16
(0, 1) +

1

8
(0, 0) +

1

2
(1, 0) +

1

16
(1, 1))

Note that R.H.S. is not well defined. This is because of Q′′ �∈
Sm.

III. QUADRILATERAL LABYRINTH FRACTALS

In this section, a set of white quadrilaterals called

the labyrinth set, is chosen with some conditions. The

corresponding fractal generated from this set is said to be

a quadrilateral labyrinth fractal. Besides that, some theorems

regarding the labyrinth set and labyrinth fractals have also been

proved. Some examples of labyrinth sets are also given. This

section requires some basic concepts in graph theory, which

are included at the beginning of this section.

A graph G = (V(G), E(G)) consists of a set of vertices

V(G) and a set of edges E(G), where E(G) is a subset of
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the unordered pairs of V(G). If {v1, v2} ∈ E(G) then the

two vertices v1 and v2 are said to be adjacent. A path is a

sequence of pairwise distinct vertices v1, v2, . . . , vk, k ≥ 1
such that for every j ∈ {1, 2, . . . , k − 1}, the vertices vj and

vj+1 are adjacent. The vertices v1 and vk are called the initial

and terminal vertices of the path, respectively. If there exists

an edge that connects the initial and terminal vertex of a path,

then the path is called a cycle (provided that k > 2). A graph is

said to be connected if a path exists between any two vertices.

A connected graph having no cycle is said to be a tree.
For n ≥ 1, the graph of Wn is defined as the graph with

vertex set V(G(Wn)) as the set of white quadrilaterals in Wn

and the edge set E(G(Wn)) as the unordered pair of white

quadrilaterals in Wn, that have a common side. Such a graph

is denoted by G(Wn) = G(V(G(Wn)), E(G(Wn))).
For n ≥ 1, the graph of Bn is defined as the graph

with vertex set V(G(Bn)) as the set of black quadrilaterals

in Bn and the edge set E(G(Bn)) as the unordered pair

of black quadrilaterals in Wn, that have a common side or

a common vertex. Such a graph is denoted by G(Bn) =
G(V(G(Bn)), E(G(Bn))).

Definition 2: Let m ≥ 4 and W1 ⊆ Sm. Then W1 is an

m×m - quadrilateral labyrinth set if it satisfies the following

properties:

1) Tree Property: G(W1) is a tree.

2) Exit Property: There exist exactly one

(k1, k2, 0, 0) ∈ A such that Sm(k1, k2, 0, 0) ∈ W1

and Sm(0, 0, k2, k1) ∈ W1 and exactly one

(k1, 0, 0, k4) ∈ A such that Sm(k1, 0, 0, k4) ∈ W1

and Sm(0, k1, k4, 0) ∈ W1, where A is given as in

(1). In this case, Sm(k1, k2, 0, 0) is called the left exit,

Sm(0, 0, k1, k2) is the right exit, Sm(k1, 0, 0, k4) is the

top exit and Sm(0, k1, k4, 0) is the bottom exit.

3) Corner Property: If there is a white quadrilateral in

W1 containing any of the vertex Qi(i = 1, 2, 3, 4) of

Q, then the white quadrilateral in Sm containing the

diagonally opposite vertex of Qi should not be in W1.

i.e. W1 contains at most one element from each of

the sets {Sm(m − 1, 0, 0, 0), Sm(0, 0,m − 1, 0)} and

{Sm(0,m− 1, 0, 0), Sm(0, 0, 0,m− 1)}.

Definition 3: If W1 ⊆ Sm is a quadrilateral labyrinth set

in the quadrilateral Q, the left side of Q is defined as the

side of Q which contains the left exit. The right, bottom

and top sides of Q are defined analogously. The vertex

of Q at the intersection of the top and left side is called

the top-left vertex. The top-right vertex, bottom-left vertex

and bottom-right vertex are defined analogously. The corner

quadrilateral containing the top-left vertex is called the top-left

corner. Analogously, the top-right corner, bottom-left corner

and bottom-right corner are defined.
Proposition 3: If W1 is a quadrilateral labyrinth set, no

corner can be an exit of two adjacent sides.
Proof: Suppose the result is not valid. WLOG Suppose

the bottom-left corner is an exit for both the bottom and left

sides. Then, by the exit property, the bottom-right corner is the

right exit, and the top-left corner is the top exit, so they belong

to W1. It contradicts the corner property. Thus, no corner can

be an exit of two adjacent sides.

Proposition 4: If W1 is an m×m - quadrilateral labyrinth

set, then Wn is an mn ×mn - quadrilateral labyrinth set for

all n ≥ 1.

The proof of the Proposition 4 is the same as the proof in

4×4 labyrinth fractal in a square; hence, the proof is omitted.

Remark 3: For a quadrilateral labyrinth set W1, it is shown

that G(Wn) is connected. Hence, Ln is connected for any

n ≥ 1. Thus, {Ln} is a decreasing sequence of nonempty

compact connected sets.

Definition 4: If W1 is a quadrilateral labyrinth set, then

the limit set L∞ =
∞⋂

n=1
Ln =

∞⋂
n=1

⋃
W∈Wn

W is called the

quadrilateral labyrinth fractal.

Figs. 2, 3, and 4 show examples of quadrilateral labyrinth

fractals.

Fig. 2 First three stages of two different 4× 4-quadrilateral labyrinth fractals

Fig. 3 First three stages of a 5× 5-quadrilateral labyrinth fractal

Fig. 4 First three stages of a 6× 6-quadrilateral labyrinth fractal

Proposition 5: Let W1 be a quadrilateral labyrinth set in

the quadrilateral Q. Then for any integer n ≥ 1,
Wn = {PW 1

1 ,W
2
1 ,...,W

n
1
(Q) : W i

1 ∈ W1 ∀ i = 1, 2, . . . , n},

where, PW 1
1 ,W

2
1 ,...,W

n
1
= PW 1

1
◦ PW 2

1
◦ . . . ◦ PWn

1
.

Proof: The proof is by induction. For n = 1, it is clear

that W1 = {PW1(Q) : W1 ∈ W1}. So, the result is true for

n = 1. Suppose the result holds up to n− 1. i.e.,

Wn−1 = {PW 1
1 ,W

2
1 ,...,W

n−1
1

(Q) : W i
1 ∈ W1, ∀ i =

1, 2, . . . , n− 1}.
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Let Vn = {PW 1
1 ,W

2
1 ,...,W

n
1
(Q) : W i

1 ∈ W1 ∀ i =
1, 2, . . . , n}. It is enough to prove that Wn = Vn, where Wn

is given as Wn = {PWn−1(W1) : W1 ∈ W1,Wn−1 ∈ Wn−1}.
Choose an element PWn−1(W1) ∈ Wn. Then

PWn−1
(W1) = PWn−1

◦ PW1
(Q) ∈ Wn. By

induction hypothesis Wn−1 = PW 1
1 ,W

2
1 ,...,W

n−1
1

(Q) for

W i
1 ∈ W1, ∀ i = 1, 2, . . . , n − 1. Using Proposition 2

recursively,

PWn−1
(W1) = PWn−1

◦ PW1
(Q)

= PP
W1

1 ,W2
1 ,...,W

n−1
1

(Q) ◦ PW1
(Q)

= PW 1
1
◦ PW 2

1
◦ . . . ◦ PWn−1

1
◦ PW1

(Q)

Thus Wn ⊆ Vn.
If W1 contains k elements, then clearly the number of

elements in Wn and Vn are kn. Hence Wn = Vn

Proposition 6: For all n ≥ 1, L∞ =
⋃

Wn∈Wn

PWn
(L∞)

Proof: Using continuity of PWn and Proposition 5, it can

be easily shown that PWn(L∞) = Wn ∩ L∞, for any n ≥ 1.

Hence,
⋃

Wn∈Wn

PWn(L∞) =
⋃

Wn∈Wn

(Wn ∩ L∞)

= L∞ ∩
⋃

Wn∈Wn

Wn

= L∞ ∩ Ln = L∞

IV. CONDITION FOR THE CONTRACTIVITY OF MAPS

BETWEEN QUADRILATERALS

This section examines whether the map between two

quadrilaterals is a contraction or not. It is found that

under certain conditions, the maps between quadrilaterals are

contraction, and in such cases, the contraction ratio is also

examined. Besides that, these conditions give the class of

quadrilateral labyrinth fractal, which can be generated from

an iterated function system.
Let Q = Q1Q2Q3Q4 and R = R1R2R3R4 be two convex

quadrilaterals with the following properties.

1)
d(R1,R2)
d(Q1,Q2)

< 1, d(R2,R3)
d(Q2,Q3)

< 1,
d(R3,R4)
d(Q3,Q4)

< 1, d(R4,R1)
d(Q4,Q1)

< 1
2) The smallest diagonal of Q is Q1Q3, if and only if the

smallest diagonal of R is R1R3.

3) length of the smallest diagonal of R
length of the smallest diagonal of Q

< 1

The map PR : Q → R given by Definition 1 need not be a

contraction for all Q and R even though Q and R satisfy the

above three conditions.
Example 1: Consider Q = Q1Q2Q3Q4 and R =

R1R2R3R4 as in Fig. 5.

Note
d(R1,R2)
d(Q1,Q2)

= 0.884 < 1, d(R2,R3)
d(Q2,Q3)

= 0.875 < 1,
d(R3,R4)
d(Q3,Q4)

= 0.14 < 1, d(R4,R1)
d(Q4,Q1)

= 0.14 < 1 and
d(R1,R3)
d(Q1,Q3)

= 0.088 < 1. The smallest diagonal of Q is Q1Q3,

and that of R is R1R3. Thus, all the three conditions above

are satisfied. But the map PR : Q → R is not contraction.
Consider the point z = (4, 4) ∈ Q. Its unique representation

is ( 12 , 0,
1
2 , 0). i.e., z = (4, 4) = 1

2Q1+0Q2+
1
2Q3+0Q4. Thus,

Fig. 5 Q = Q1Q2Q3Q4 and R = R1R2R3R4

PR(z) = PR(
1
2Q1+0Q2+

1
2Q3+0Q4) =

1
2R1+0R2+

1
2R3+

0R4 = (7, 1
2 ). But, d(PR(z), PR(Q2)) = 7.02 > d(z,Q2) =

5.657. i.e., PR is not a contraction.

Theorem 1: [10] Let Δ = ABC and δ = A′B′C ′

be triangles in R2 with vertices {(0, 0), (a, 0), (b1, b2)} and

{(0, 0), (a′, 0), (b′1, b′2)} respectively. Let Pδ : Δ → δ be a

linear transformation sending A to A′, B to B′ and C to C ′.
Then Pδ is a contraction if λ1 =

√
(k +m)2 + θ2(l − k)2 +√

(k −m)2 + θ2(l − k)2 < 2 where, k = a′
a , l =

b′1
b1
,m =

b′2
b2
, θ = b1

b2
and in this case the contraction ratio is λ = λ1

2

Remark 4: Let Δ1 be a triangle with coordinates

A1 = (a1, b1), A2 = (a2, b2), A3 = (a3, b3), and Δ2 be a

triangle obtained from Δ1 by translation and rotation such

that one vertex of Δ2 is at origin P1 = (0, 0) and another

vertex P2 at (p, 0). Let the third vertex of Δ2 is given by

P3 = (r1, r2). Assume A1 is mapped to P1 = (0, 0) and

A2 is mapped to P2 = (p, 0). Since translation and rotation

do not change the distance between two points, d(A1, A2) =
d(P1, P2) which gives p =

√
(a1 − a2)2 + (b1 − b2)2. Also,

d(A1, A3) = d(P1, P3) and d(A2, A3) = d(P2, P3) implies

(a1−a3)
2+(b1−b3)

2 = r21+r22 and (a2−a3)
2+(b2−b3)

2 =
(p− r1)

2+ r22 . Substituting the value of p and simplifying the

above equations, the value of r1 and r2 are obtained as follows:

r1 =
(a1 − a2)

2 + (b1 − b2)
2 + (a1 − a3)

2

2
√
(a1 − a2)2 + (b1 − b2)2

+
(b1 − b3)

2 − (a2 − a3)
2 − (b2 − b3)

2

2
√
(a1 − a2)2 + (b1 − b2)2

=
(a21 − a1a2 + a2a3 − a3a1 + b21 − b1b2 + b2b3 − b3b1)√

(a1 − a2)2 + (b1 − b2)2

r2 =
√

(a1 − a3)2 + (b1 − b3)2 − r21

Hence, the coordinates of Δ2 are obtained.

The above remark helps us formulate the conditions on

quadrilateral so that the map PR : Q → R is contraction.

Theorem 2: Let Q = Q1Q2Q3Q4 be a quadrilateral

with smallest diagonal Q1Q3, R = R1R2R3R4 be another

quadrilateral with smallest diagonal R1R3, and PR : Q → R
be the map between quadrilaterals as in Definition 1. Also,

let Qi = (ai, bi) and Ri = (ci, di) for i = 1, 2, 3, 4. Take

Δ1 = Q1Q2Q3, Δ2 = Q3Q4Q1, δ1 = R1R2R3, and

δ2 = R3R4R1. Then, PR is a contraction if the following
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two conditions are satisfied.

λ1 =
√

(k1 +m1)2 + θ21(l1 − k1)2

+
√
(k1 −m1)2 + θ21(l1 − k1)2 < 2

λ2 =
√

(k2 +m2)2 + θ22(l2 − k2)2

+
√
(k2 −m2)2 + θ22(l2 − k2)2 < 2

where the values of k1,m1, l1, θ1, k2,m2, l2, and θ2 are as

given in Appendix ??. The contraction ratio of PR is

λ = max{λ1

2 , λ2

2 }
Proof: Case 1: x, y ∈ Δ1 or x, y ∈ Δ2

Then, x = α1Q1+α2Q2+α3Q3+0Q4 with α1+α2+α3 = 1,

and y = β1Q1+β2Q2+β3Q3+0Q4 with β1+β2+β3 = 1 or

x = α1Q1+0Q2+α3Q3+α4Q4 with α1+α3+α4 = 1, and

y = β1Q1+0Q2+β3Q3+β4Q4 with β1+β3+β4 = 1. Then

PR(x) = α1R1 +α2R2 +α3R3 +0R4 and PR(y) = β1R1 +
β2R2+β3R3+0R4 or PR(x) = α1R1+0R2+α3R3+α4R4

and PR(y) = β1R1 + 0R2 + β3R3 + β4R4. In both cases

PR reduces to a linear map from Δ1 to δ1 or Δ2 to δ2. So,

by Theorem 1, d(PR(x), PR(y)) ≤ λi

2 d(x, y) ≤ λd(x, y) for

i = 1 or 2.

Case 2: x ∈ Δ1, y ∈ Δ2 or x ∈ Δ2, y ∈ Δ1. Then PR(x) ∈
δ1, PR(y) ∈ δ2 or PR(x) ∈ δ2, PR(y) ∈ δ1 respectively. Let

p be the point in the smallest diagonal of Q at which the line

from x to y intersects with the smallest diagonal.

Suppose p = γ1Q1 + 0Q2 + γ3Q3 + 0Q4, with

γ1 + γ3 = 1. Then PR(p) = γ1R1 + 0R2 + γ3R3 +
0R4 is a point in the smallest diagonal of R. So,

d(PR(x), PR(y)) ≤ d(PR(x), PR(p)) + d(PR(p), PR(y)) ≤
λ1

2 d(x, p)+ λ2

2 d(p, y) or λ2

2 d(x, p)+ λ1

2 d(p, y) ≤ λ(d(x, p)+
d(p, y)) = λd(x, y). Hence PR : Q → R is contraction map

from Q to R with contraction ratio λ.

Theorem 3: Let L∞ be a labyrinth fractal generated from

the convex quadrilateral Q. Also, suppose W1 is the set of

first stage white quadrilaterals of L∞. If each of the map from

the set {PW1 : Q → W1;W1 ∈ W1} satisfies the Theorem 2,

then L∞ is an attractor of the iterated function system {PWn :
Wn ∈ Wn} for any n.

Proof: If each of the map from the set {PW1
: Q →

W1;W1 ∈ W1} satisfies the Theorem 2, then each PW1
is a

contraction. Hence, its restriction to the subset L∞ is again

a contraction. It is clear from Proposition 5 that each PWn

can be written as the composition of n number of PW1
maps,

where W1 varies in W1. Since each PW1
is a contraction,

the composition map PWn
is also a contraction. Hence by

Proposition 6, L∞ is an attractor of the iterated function

system {PWn : Wn ∈ Wn} for any n.

V. BOX-COUNTING DIMENSION

This section gives the box-counting dimension of

quadrilateral labyrinth fractals. The box-counting dimension

is found by finding an upper bound and lower bound of the

number of boxes required to cover the fractal at each stage.

Let L∞ be an m × m quadrilateral labyrinth fractal

generated from an m × m quadrilateral labyrinth

set W1 inside a quadrilateral Q = Q1Q2Q3Q4.

Suppose number of elements in W1 is k. Let

l = max{d(Q1, Q2), d(Q2, Q3), d(Q3, Q4), d(Q4, Q1)}.

WLOG, suppose that l = d(Q1, Q2). An example of such a

quadrilateral is given in Fig. 6.

Fig. 6 (a) A quadrilateral (b) first stage of a 4× 4− quadrilateral labyrinth
fractal

Let Nn denote the number of squares of side length l
mn ,

which covers the nth stage, Wn, of L∞.

Claim 1: N1 ≤ 2k
To prove the Claim 1, it is enough to show that each element

in W1 can be covered by at most two squares of side length l
m .

Let R = R1R2R3R4 be an element of W1. Then R can be

either in any of the sets Sm(A1), Sm(A2), or Sm(A3).
Case 1: If R ∈ Sm(A1), then R is a parallelogram with side

lengths d(R1, R2) = d(R3, R4) =
d(Q1,Q2)

m and d(R2, R3) =

d(R4, R1) = d(Q2,Q3)
m . Since d(Q1, Q2) = l, d(R1, R2) =

d(R3, R4) = l
m and d(R2, R3) = d(R4, R1) ≤ l

m . Now,

one square of side length l
m is placed on the side R1R2 and

another on the side R3R4 such that R is covered. Depending

on the original quadrilateral Q, the two kinds of covering can

occur as in Fig. 7.

Fig. 7 Two kinds of covering squares for elements in Sm(A1)

Note that these two squares are enough to cover R since

R is a parallelogram, and the side R1R2 is the side of the

largest length, and because of the same reason, it is clear that

the covering will never be as in Fig. 8.

Fig. 8 No such coverings

Case 2: If R ∈ Sm(A2), then R is a parallelogram with

side lengths d(R1, R2) = d(R3, R4) =
d(Q3,Q4)

m
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and d(R2, R3) = d(R4, R1) =
d(Q4,Q1)

m . Since d(Q3, Q4) ≤ l
and d(Q4, Q1) ≤ l, d(R1, R2) = d(R3, R4) ≤ l

m and

d(R2, R3) = d(R4, R1) ≤ l
m . So two squares of side length

l
m will cover R as depicted in Fig. 9.

Case 3: If R ∈ Sm(A3), then R is similar to Q with

similarity ratio 1
m . Since d(Q1, Q2) = l, d(R1, R2) =

l
m and

R1R2 is the side of maximum length of R. So, the angle at

R1 and R2 cannot be obtuse. Otherwise, the length of R3R4

will be greater than R1R2. Suppose the angle at R1 is not

obtuse. Then one square of side length l
m is placed on the

side R1R2 and the second square is placed with one vertex at

R2 as shown in Fig. 10 so that these two squares cover the

quadrilateral R.

Hence, each quadrilateral in W1 is covered by at most two

squares of side length l
m . So, N1 ≤ 2k.

Note that the nth stage Wn of L∞ is an mn ×
mn−quadrilateral labyrinth set and Wn contains kn elements,

when W1 contains k elements. Hence Nn ≤ 2kn and so

logNn ≤ log2kn. For sufficiently large n,

logNn

− log(l/mn)
≤ log(2kn)

− log(l/mn)

=⇒ logNn

− log(l/mn)
≤ log(2kn)

logmn − log l

=⇒ logNn

− log(l/mn)
≤ log(2) + log(kn)

logmn − log l

=⇒ logNn

− log(l/mn)
≤ log 2

n logm− log l
+

log(k)

logm− log l
n

Thus,

lim
n→∞

logNn

− log(l/mn)
≤ log(k)

logm
(2)

Hence, the box-counting dimension of an m×m quadrilateral

labyrinth fractal L∞ is bounded above by log k
logm , where k is

the number of elements in W1.

Now, choose a positive number l′ such that there exists a

square of length l′
m inside each element of W1. Consider the

covering of nth stage of L∞ by squares of length l′
mn . Let

N ′
n be the number of squares of length l′

mn used to cover the

nth stage. Then,

Claim: kn ≤ N ′
n

For n = 1, k ≤ N ′
1 is obvious. For n > 1, it is enough

to prove that corresponding to each W ∈ Wn, there exists a

square of length l′
mn , which is completely inside W . Note that,

each element in Wn is similar to any one of the element in

W1 with similarity ratio 1
4n−1 and a square of side length l′

mn

is similar to a square of side length l′
m with similarity ratio

1
4n−1 . So, clearly, each element in Wn contains a square of

side length l′
mn . Hence kn ≤ N ′

n for all n ∈ N. For sufficiently

large n,

log(kn)

− log(l′/mn)
≤ logN ′

n

− log(l′/mn)

=⇒ log(kn)

log(mn)− log(l′)
≤ logN ′

n

− log(l′/mn)

=⇒ log k

logm− log(l′)
n

≤ logN ′
n

− log(l′/mn)

Thus,

limn→∞
logNn

− log(l/mn)
≥ log(k)

logm
(3)

Hence, the box-counting dimension of an m×m quadrilateral

labyrinth fractal, L∞ is bounded below by log k
logm , where k is

the number of elements in W1. By (2) and (3), it is clear

that the box-counting dimension of an m × m quadrilateral

labyrinth fractal is log k
logm where k is the number of elements

in W1.

VI. HAUSDORFF DIMENSION

This section deals with the Hausdorff dimension of the

quadrilateral labyrinth fractals. The monotonicity property is

used to find the lower bound of the Hausdorff dimension. It

is seen that the lower bound of the Hausdorff dimension and

the box-counting dimension are equal, and it ensures that the

box-counting and Hausdorff dimensions of the quadrilateral

labyrinth fractal are equal.

Let Q be a convex quadrilateral and L∞ be the labyrinth

fractal generated from a labyrinth set W1 ⊆ Sm = Sm(A1)∪
Sm(A2) ∪ Sm(A3) where Sm, A1, A2, A3 are all defined

as in Section II. Choose W1 ∈ W1 such that W1 ∈
Sm(A1)

⋃
Sm(A2) (i.e, W1 is a parallelogram). Then W1 ∩

L∞ ⊆ L∞ and dimH(W1 ∩ L∞) ≤ dimH(L∞). Also, note

that W1∩L∞ can be seen as a labyrinth fractal constructed on

the parallelogram W1, with its initial labyrinth set containing

the same number of white quadrilaterals as that of W1 and

the position of these white quadrilaterals are same as the

position of W1s in Q. That means the Hausdorff dimension of

a labyrinth fractal in a parallelogram forms a lower bound for

the Hausdorff dimension of a quadrilateral labyrinth fractal.

So, it is enough to concentrate on the Hausdorff dimension

of a labyrinth fractal in a parallelogram. For simplicity, let R
denote the parallelogram.

Definition 5: A geometric graph directed construction in

Rm consists of

1) A finite sequence of non-overlapping, compact subsets

of Rm, say, W1,W2, . . . ,Wk such that each Wi has a

nonempty interior.

2) A directed graph G with vertex set consisting of the

integers 1, 2, . . . , k and similarity maps Ti,j of Rm,

where (i, j) ∈ G, with similarity ratios ti,j such that

a) for each i, 1 ≤ i ≤ k, there is some j such that

(i, j) ∈ G.

b) for each i, {Ti,j(Wj) : (i, j) ∈ G} is a

non-overlapping family and Wi ⊃ ∪{Ti,j(Wj) :
(i, j) ∈ G}.

c) if the path component of G rooted at the vertex

i1 is a cycle [i1, i2, . . . iq, iq+1 = i1], then

Πq
k=1tikik+1

< 1

{W1,W2, . . . ,Wk} is taken as the white parallelograms

in the first stage of labyrinth fractal constructed on

R, where k is the number of white quadrilaterals

of the first stage. Consider the directed graph G as

a graph with vertex set {1, 2, . . . , k} and edge set

{(1, 1), (1, 2), . . . , (1, k), (2, 1), (2, 2), . . . , (2, k), . . . , (k, 1),
(k, 2), . . . , (k, k)}. Corresponding to each (i, j), where, i, j =
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Fig. 9 Two kinds of covering squares for elements in Sm(A2)

Fig. 10 Two kinds of covering squares for elements in Sm(A3)

1, 2, .., k, take, Ti,j(x) = PWi
(x) for all j, and so ti,j = 1

m
for all i and j.

Theorem 4: [11] For each geometric construction, there

exists a unique vector of compact sets, (K1,K2, . . .Kk) ∈
Πk

i=1K(Wi) such that for each i, Wi =
⋃{Ti,j(Wj) :

(i, j) ∈ G}, where K(Wi) denotes the space of compact

subsets of Wi. The construction object of this geometric

construction is defined as K =
⋃k

i=1 Ki.

Definition 6: The weighted incidence matrix or

construction matrix A = AG associated with a graph

directed construction is the k × k matrix defined by

A = [ti,j ]1≤i,j≤k, where we make the convention that ti,j = 0
if (i, j) �∈ G. For each β ≥ 0, let Aβ = AG,β be the k × k

matrix given by aβ;i,j = tβi,j . Φ(β) denotes the spectral radius

of Aβ .

Mauldin and Williams introduced the graph-directed

construction and examined the Hausdorff dimension of the

construction object obtained from this construction [11].

Theorem 5: [11] For each graph-directed construction such

that G itself is strongly connected, the Hausdorff dimension

of K, the construction object, is α, where Φ(α) = 1.

The labyrinth fractal in the parallelogram can be seen as the

construction object of the graph-directed construction with the

weighted incidence matrix, A = [ 1m ]k×k. For any β > 0, Aβ is

a matrix having all entries equal. So, it is easy to see that Φ(β)
of Aβ is the sum of row entries. So, it is enough to find the

value of β for which this sum of row elements equals one, i.e.,

the Hausdorff dimension β is such that Σk
i=1(

1
m )β = 1 =⇒

β = log k
logm . So, for any m×m labyrinth fractal generated on a

parallelogram, Hausdorff dimension is equal to log k
logm , where

k is the number of white parallelograms of stage 1. Since

the box-counting dimension of m×m quadrilateral labyrinth

fractal is obtained as log k
logm , it can be seen that the Hausdorff

dimension of m × m quadrilateral labyrinth fractal is log k
logm ,

where k is the number of white quadrilaterals of stage 1.

VII. TOPOLOGICAL PROPERTIES

This section deals with the topological properties of the

labyrinth set and labyrinth fractal. The section also studies

different connectedness properties in Q \ Ln and Q \ L∞. It

can be seen that many of the results in m×m labyrinth fractal

in a square are satisfied for a quadrilateral labyrinth fractal,

too. So we state the Propositions 7 and 8 and Theorem 6

without proofs.

Proposition 7: If W ⊂ Sm is a set of white quadrilaterals

such that the associated graph G(W) is a tree. From every

black quadrilateral in B = Sm \W , there is a path in G(B) to

a border quadrilateral.

Definition 7: Let X be a topological space and x0, x1 ∈ X .

Then an arc in X from x0 to x1 is a continuous function

γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1.

Definition 8: A dendrite is a locally connected continuum

that contains no simple closed curve, and a continuum is a

nonempty compact connected Hausdorff space.

Proposition 8: If x is a point in Q \ Ln, then there is an

arc a ⊆ Q \ Ln+1 between x and a point in the boundary of

Q.

Corollary 1: If x is a point in Q \L∞, then there is an arc

a ⊆ Q \ L∞ between x and a point in the boundary of Q.

Theorem 6: L∞ is a dendrite.

Theorem 7: The interior of L∞ is empty.

Proof: Suppose not. Then there exist a point x ∈ Int(L∞)
and an r > 0 such that ball with center x and radius r, say

B(x, r), is contained in L∞. Choose an ε such that o < ε < r
and B(x, ε) ⊆ B(x, r). Then clearly, the circle with centre x
and radius ε is a simple closed curve contained in L∞. It is a

contradiction.

Corollary 2: L∞ is a first category subset in R2.

Proof: Since L∞ is closed, the interior of closure of L∞
is the same as the interior of L∞ and it is empty. Thus L∞
is nowhere dense subset of R2.

Consider closed intervals in R with rational endpoints and
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then consider a strip on R2 corresponding to each of these

intervals. i.e, if [r1, r2] is a interval with r1, r2 ∈ Q, consider

the strip [r1, r2] × y − axis. Collection of all such strips is,

say, {Ai}, is countable. Let Bi = Ai ∩ L∞. Then {Bi} is

countable and L∞ =
∞⋃
i=1

Bi and each Bi is nowhere dense

since they are subsets of nowhere dense set L∞. Hence, L∞
is the first category subset in R2.

Remark 5: Let L∞ as a subspace of R2 with induced

Topology. Then L∞ is compact and Hausdorff, hence a Baire’s

space. Since every Baire space is of the second category, L∞
is the second category subspace [12].

Theorem 8: Q \ L∞ is not path connected.

Proof: Choose an exit WL of W1 such that WL is

not a corner quadrilateral. Such an exit always exists by

Proposition 3 and corner property. WLOG suppose that WL is

the left exit and let P be a path from WL to WR, where WR

is the right exit of W1, which is not a corner quadrilateral. Let

a = L∞ ∩ P . Then a is a path from left to right exit in L∞.

Since both the bottom-left and bottom-right corners cannot

be white in W1, choose the black quadrilateral, say B, from

these corners. Similarly, choose a black quadrilateral, say B′,
from the top-left and top-right corners of W1. Let x ∈ B and

y ∈ B′. Now, if a path exists from x to y, it should intersect

with a, which is impossible since a ⊆ L∞. So there does not

exist a path from x to y in Q \ L∞, so Q \ L∞ is not path

connected.

Corollary 3: Q \ L∞ is not connected.

Proof: Claim: Q \ L∞ is locally path connected.

Let x ∈ Q \ L∞, and U is an open set containing x. For

sufficiently small r, there exists an open ball containing x
and contained in U in subspace topology, and it will be path

connected. Hence, Q \ L∞ is locally path connected. Since

every locally path-connected space is connected if and only

if the space is path-connected, Q \ L∞ is not connected by

Theorem 8.

Corollary 4: Q \ Ln is not path connected and not

connected for any n ≥ 1.

Theorem 9: If W1 is an m×m - quadrilateral labyrinth set

in Q, m ≥ 4, such that W1 contains no border quadrilateral

except the exits, and L∞ is the quadrilateral labyrinth fractal

generated from W1, then the number of connected components

of Q \ L∞ is 4.

Proof: Claim 1: W1 cannot have a corner quadrilateral.

Suppose a corner quadrilateral exists, say W0 in W1. Let

W0 be the top-left corner. Then, it should be either left-exit

or top-exit. WLOG suppose W0 is the top-exit. Since W1 is

connected, there exists a border quadrilateral, say W1, which

is a neighbour of W0. Since W1 is a border quadrilateral, it

should be an exit. Also, W1 cannot be a top exit, so W1 is a left

exit. Since the top-left corner is the top exit, the bottom-left

corner should be the bottom exit. Same argument as above, a

left exit exists, say W2, a neighbour of the bottom left corner.

Since the left exit is unique, the only possibility is W1 = W2.

But this case holds only if m = 3. So W1 contains no corner

quadrilateral. Hence each vertex of Q is in Q \ L∞.

Claim 2: A connected component of Q \ L∞ does not

contain more than one vertex of Q.

Suppose not. Let K be a connected component of Q \ L∞
which contains two corner vertices. WLOG assume the top-left

vertex and top-right vertex are contained in K. Since Q \
L∞ is locally path connected, the path connected components

and connected components of Q \L∞ coincide. Thus, K is a

path-connected component containing both the top-left vertex

and the top-right vertex, and a path exists in K between these

two vertices. But this path will intersect with the path from

top exit to bottom exit as shown in Theorem 6, and it is not

possible. Hence, a connected component of Q \ L∞ contains

at most one vertex of Q.

Claim 3: Each connected component of Q\L∞ contains at

least one vertex.

From Corollary 1, it is clear that there exists a path from

any point of Q \ L∞ to one of the boundary points of Q.

Also, from any border point in Q \ Ln, a path exists to one

of the vertices of Q; otherwise, it will contradict the theorem

hypothesis. Hence, each component of Q\Ln contains at least

one vertex of Q. Thus, corresponding to each vertex is a unique

connected component in Q \ L∞, so the number of related

components of Q \ L∞ is 4.

VIII. CONCLUSION

In this paper, labyrinth fractals on a convex quadrilateral

are introduced. Labyrinth fractals are defined in the same

manner as in a square or a triangle on any convex quadrilateral.

However, the labyrinth fractal is not self-similar as the

construction of smaller quadrilaterals lacks self-similarity

property.

The Hausdorff dimension and the box-counting dimension

of the constructed quadrilateral labyrinth fractals are obtained,

and it is observed that both dimensions coincide. The

topological properties of the quadrilateral labyrinth fractal and

its complement on the quadrilateral are also studied in this

paper.
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APPENDIX

k1 =

√
(c1 − c2)2 + (d1 − d2)2√
(a1 − a2)2 + (b1 − b2)2

m1 =

√
((c1 − c3)2 + (d1 − d3)2)((c1 − c2)2 + (d1 − d2)2)− (c21 − c1c2 + c2c3 − c3c1 + d21 − d1d2 + d2d3 − d3d1)2

√
(a1 − a2)2 + (b1 − b2)2

√
(c1 − c2)2 + (d1 − d2)2

√
((a1 − a3)2 + (b1 − b3)2)((a1 − a2)2 + (b1 − b2)2)− (a21 − a1a2 + a2a3 − a3a1 + b21 − b1b2 + b2b3 − b3b1)2

l1 =
(c21 − c1c2 + c2c3 − c3c1 + d21 − d1d2 + d2d3 − d3d1)

√
(a1 − a2)2 + (b1 − b2)2

(a21 − a1a2 + a2a3 − a3a1 + b21 − b1b2 + b2b3 − b3b1)
√

(c1 − c2)2 + (d1 − d2)2

θ1 =
(a21 − a1a2 + a2a3 − a3a1 + b21 − b1b2 + b2b3 − b3b1)√

((a1 − a3)2 + (b1 − b3)2)((a1 − a2)2 + (b1 − b2)2)− (a21 − a1a2 + a2a3 − a3a1 + b21 − b1b2 + b2b3 − b3b1)2

k2 =

√
(c3 − c4)2 + (d3 − d4)2√
(a3 − a4)2 + (b3 − b4)2

m2 =

√
((c3 − c1)2 + (d3 − d1)2)((c3 − c4)2 + (d3 − d4)2)− (c23 − c3c4 + c4c1 − c1c3 + d23 − d3d4 + d4d1 − d1d3)2

√
(a3 − a4)2 + (b3 − b4)2

√
(c3 − c4)2 + (d3 − d4)2

√
((a3 − a1)2 + (b3 − b1)2)((a3 − a4)2 + (b3 − b4)2)− (a23 − a3a4 + a4a1 − a1a3 + b23 − b3b4 + b4b1 − b1b3)2

l2 =
(c23 − c3c4 + c4c1 − c1c3 + d23 − d3d4 + d4d1 − d1d3)

√
(a3 − a4)2 + (b3 − b4)2

(a23 − a3a4 + a4a1 − a1a3 + b23 − b3b4 + b4b1 − b1b3)
√

(c3 − c4)2 + (d3 − d4)2

θ2 =
(a23 − a3a4 + a4a1 − a1a3 + b23 − b3b4 + b4b1 − b1b3)√

((a3 − a1)2 + (b3 − b1)2)((a3 − a4)2 + (b3 − b4)2)− (a23 − a3a4 + a4a1 − a1a3 + b23 − b3b4 + b4b1 − b1b3)2
.
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