Search results for: Environmental Awareness Training
1215 2Taiwan Public Corporation's Participation in the Mechanism of Payment for Environmental Services
Authors: Wan-Yu Liu, Chun-Cheng Lin
Abstract:
The Taiwan government has started to promote the “Plain Landscape Afforestation and Greening Program" since 2002. A key task of the program was the payment for environmental services (PES), entitled the “Plain Landscape Afforestation Policy" (PLAP), which was certificated by the Executive Yuan on August 31, 2001 and enacted on January 1, 2002. According to the policy, it is estimated that the total area of afforestation will be 25,100 hectares by December 31, 2007. Until the end of 2007, the policy had been enacted for six years in total and the actual area of afforestation was 8,919.18 hectares. Among them, Taiwan Sugar Corporation (TSC) was accounted for 7,960 hectares (with 2,450.83 hectares as public service area) which occupied 86.22% of the total afforestation area; the private farmland promoted by local governments was accounted for 869.18 hectares which occupied 9.75% of the total afforestation area. Based on the above, we observe that most of the afforestation area in this policy is executed by TSC, and the achievement ratio by TSC is better than by others. It implies that the success of the PLAP is seriously related to the execution of TSC. The objective of this study is to analyze the relevant policy planning of TSC-s participation in the PLAP, suggest complementary measures, and draw up effective adjustment mechanisms, so as to improve the effectiveness of executing the policy. Our main conclusions and suggestions are summarized as follows: 1. The main reason for TSC-s participation in the PLAP is based on their passive cooperation with the central government or company policy. Prior to TSC-s participation in the PLAP, their lands were mainly used for growing sugarcane. 2. The main factors of TSC-s consideration on the selection of tree species are based on the suitability of land and species. The largest proportion of tree species is allocated to economic forests, and the lack of technical instruction was the main problem during afforestation. Moreover, the method of improving TSC-s future development in leisure agriculture and landscape business becomes a key topic. 3. TSC has developed short and long-term plans on participating in the PLAP for the future. However, there is no great willingness or incentive on budgeting for such detailed planning. 4. Most people from TSC interviewed consider the requirements on PLAP unreasonable. Among them, an unreasonable requirement on the number of trees accounted for the greatest proportion; furthermore, most interviewees suggested that the government should continue to provide incentives even after 20 years. 5. Since the government shares the same goals as TSC, there should be sufficient cooperation and communication that support the technical instruction and reduction of afforestation cost, which will also help to improve effectiveness of the policy.
Keywords: Payment for environmental services (PES), afforestation subsidy, Taiwan Sugar Corporation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771214 Taiwan Sugar Corporation's Participation in the Mechanism of Payment for Environmental Services (PES)
Authors: Wan-Yu Liu
Abstract:
The Taiwan government has started to promote the “Plain Landscape Afforestation and Greening Program" since 2002. A key task of the program was the payment for environmental services (PES), entitled the “Plain Landscape Afforestation Policy" (PLAP), which was certificated by the Executive Yuan on August 31, 2001 and enacted on January 1, 2002. According to the policy, it is estimated that the total area of afforestation will be 25,100 hectares by December 31, 2007. Until the end of 2007, the policy had been enacted for six years in total and the actual area of afforestation was 8,919.18 hectares. Among them, Taiwan Sugar Corporation (TSC) was accounted for 7,960 hectares (with 2,450.83 hectares as public service area) which occupied 86.22% of the total afforestation area; the private farmland promoted by local governments was accounted for 869.18 hectares which occupied 9.75% of the total afforestation area. Based on the above, we observe that most of the afforestation area in this policy is executed by TSC, and the achievement ratio by TSC is better than by others. It implies that the success of the PLAP is seriously related to the execution of TSC. The objective of this study is to analyze the relevant policy planning of TSC's participation in the PLAP, suggest complementary measures, and draw up effective adjustment mechanisms, so as to improve the effectiveness of executing the policy. Our main conclusions and suggestions are summarized as follows: 1. The main reason for TSC’s participation in the PLAP is based on their passive cooperation with the central government or company policy. Prior to TSC’s participation in the PLAP, their lands were mainly used for growing sugarcane. 2. The main factors of TSC's consideration on the selection of tree species are based on the suitability of land and species. The largest proportion of tree species is allocated to economic forests, and the lack of technical instruction was the main problem during afforestation. Moreover, the method of improving TSC’s future development in leisure agriculture and landscape business becomes a key topic. 3. TSC has developed short and long-term plans on participating in the PLAP for the future. However, there is no great willingness or incentive on budgeting for such detailed planning. 4. Most people from TSC interviewed consider the requirements on PLAP unreasonable. Among them, an unreasonable requirement on the number of trees accounted for the greatest proportion; furthermore, most interviewees suggested that the government should continue to provide incentives even after 20 years. 5. Since the government shares the same goals as TSC, there should be sufficient cooperation and communication that support the technical instruction and reduction of afforestation cost, which will also help to improve effectiveness of the policy.
Keywords: Payment for environmental services, afforestation subsidy, Taiwan sugar corporation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751213 Designing a Framework for Network Security Protection
Authors: Eric P. Jiang
Abstract:
As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17941212 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131211 Key Issues in Transfer Stage of BOT Project: Experience from China
Authors: Wang Liguang, Zhang Xueqing
Abstract:
The build-operate-transfer (BOT) project delivery system has provided effective routes to mobilize private sector funds, innovative technologies, management skills and operational efficiencies for public infrastructure development and have been widely used in China during the last 20 years. Many BOT projects in China will be smoothly transferred to the government soon and the transfer stage, which is considered as the last stage, must be studied carefully and handled well to achieve the overall success of BOT projects. There will be many issues faced by both the public sector and private sector in the transfer stage of BOT projects, including project post-assessment, technology and documents transfer, personal training and staff transition, etc. and sometimes additional legislation is needed for future operation and management of facilities. However, most previous studies focused on the bidding, financing, and building and operation stages instead of transfer stage. This research identifies nine key issues in the transfer stage of BOT projects through a comprehensive study on three cases in China, and the expert interview and expert discussion meetings are held to validate the key issues and give detail analysis. A proposed framework of transfer management is prepared based on the experiences derived and lessons drawn from the case studies and expert interview and discussions, which is expected to improve the transfer management of BOT projects in practice.
Keywords: BOT project, key issues, transfer management transfer stage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10511210 Envelope-Wavelet Packet Transform for Machine Condition Monitoring
Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman
Abstract:
Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571209 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.
Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8621208 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321207 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning
Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang
Abstract:
This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.Keywords: Acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5931206 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20701205 Perception of Neighbourhood-Level Built Environment in Relation to Youth Physical Activity in Malaysia
Authors: A. Abdullah, N. Faghih Mirzaei, S. Hany Haron
Abstract:
Neighbourhood environment walkability on reported physical activity (PA) levels of students of Universiti Sains Malaysia (USM) in Malaysia. Compared with previous generations, today’s young people spend less time playing outdoors and have lower participation rates in PA. Research suggests that negative perceptions of neighbourhood walkability may be a potential barrier to adolescents’ PA. The sample consisted of 200 USM students (to 24 years old) who live outside of the main campus and engage in PA in sport halls and sport fields of USM. The data were analysed using the t-test, binary logistic regression, and discriminant analysis techniques. The present study found that youth PA was affected by neighbourhood environment walkability factors, including neighbourhood infrastructures, neighbourhood safety (crime), and recreation facilities, as well as street characteristics and neighbourhood design variables such as facades of sidewalks, roadside trees, green spaces, and aesthetics. The finding also illustrated that active students were influenced by street connectivity, neighbourhood infrastructures, recreation facilities, facades of sidewalks, and aesthetics, whereas students in the less active group were affected by access to destinations, neighbourhood safety (crime), and roadside trees and green spaces for their PAs. These results report which factors of built environments have more effect on youth PA and they message to the public to create more awareness about the benefits of PA on youth health.
Keywords: Fear of crime, neighbourhood built environment, physical activities, street characteristics design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13771204 A Vehicle Monitoring System Based on the LoRa Technique
Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang
Abstract:
Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.
Keywords: Vehicle, monitoring system, LoRa, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30991203 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.
Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10041202 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements
Authors: M. Ondova, A. Estokova
Abstract:
Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills.
Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.
Keywords: Life cycle assessment, fly ash, waste, concrete pavements
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35021201 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.
Keywords: Big data, evolutionary computing, cloud, precision technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7551200 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
Authors: O. Alelweet, S. Pavia
Abstract:
In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.
Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7761199 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19061198 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15741197 Perceptions of Climate Change Risk to Forest Ecosystems: A Case Study of Patale Community Forestry User Group, Nepal
Authors: N. R. P Withana, E. Auch
Abstract:
The purpose of this study was to investigate perceptions of climate change risk to forest ecosystems and forestbased communities as well as perceived effectiveness of adaptation strategies for climate change as well as challenges for adaptation. Data was gathered using a pre-tested semi-structured questionnaire. Simple random selection technique was applied. For the majority of issues, the responses were obtained on multi-point likert scales, and the scores provided were, in turn, used to estimate the means and other useful estimates. A composite knowledge index developed using correct responses to a set of self-rated statements were used to evaluate the issues. The mean of the knowledge index was 0.64. Also all respondents recorded values of the knowledge index above 0.25. Increase forest fire was perceived by respondents as the greatest risk to forest eco-system. Decrease access to water supplies was perceived as the greatest risk to livelihoods of forest based communities. The most effective adaptation strategy relevant to climate change risks to forest eco-systems and forest based communities livelihoods in Kathmandu valley in Nepal as perceived by the respondents was reforestation and afforestation. As well, lack of public awareness was perceived as the major limitation for climate change adaptation. However, perceived risks as well as effective adaptation strategies showed an inconsistent association with knowledge indicators and social-cultural variables. The results provide useful information to any party who involve with climate change issues in Nepal, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.
Keywords: Climate change, forest ecosystems, forest-based communities, risk perceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22961196 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11751195 Increasing Sustainability Using the Potential of Urban Rivers in Developing Countries with a Biophilic Design Approach
Authors: Mohammad Reza Mohammadian, Dariush Sattarzadeh, Mir Mohammad Javad Poor Hadi Hosseini
Abstract:
Population growth, urban development and urban buildup have disturbed the balance between the nature and the city, and so leading to the loss of quality of sustainability of proximity to rivers. While in the past, the sides of urban rivers were considered as urban green space. Urban rivers and their sides that have environmental, social and economic values are important to achieve sustainable development. So far, efforts have been made at various scales in various cities around the world to revitalize these areas. On the other hand, biophilic design is an innovative design approach in which attention to natural details and relation to nature is a fundamental concept. The purpose of this study is to provide an integrated framework of urban design using the potential of urban rivers (in order to increase sustainability) with a biophilic design approach to be used in cities in developing countries. The methodology of the research is based on the collection of data and information from research and projects including a study on biophilic design, investigations and projects related to the urban rivers, and a review of the literature on sustainable urban development. Then studying the boundary of urban rivers is completed by examining case samples. Eventually, integrated framework of urban design, to design the boundaries of urban rivers in the cities of developing countries is presented regarding the factors affecting the design of these areas. The result shows that according to this framework, the potential of the river banks is utilized to increase not only the environmental sustainability but also social, economic and physical stability with regard to water, light, and the usage of indigenous materials, etc.
Keywords: Urban rivers, biophilic design, urban sustainability, nature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711194 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831193 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361192 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond
Authors: Zeineb Deymi-Gheriani
Abstract:
In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).
Keywords: Active learning, constructivism, experiential learning, Piaget, Vygotsky.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671191 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model
Authors: Malin Isaksson
Abstract:
Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.
Keywords: Shared practice, flipped classroom, literature in foreign language studies, teaching literature analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7691190 Intelligent Neural Network Based STLF
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291189 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.
Keywords: 3D QSAR, CoMSIA, Triazoles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791188 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression
Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah
Abstract:
An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141187 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality
Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang
Abstract:
The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411186 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal
Authors: M. Feliciano, F. Maia, A. Gonçalves
Abstract:
Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.
Keywords: Carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916