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Abstract—Farm management and operations will drastically 

change due to access to real-time data, real-time forecasting and 
tracking of physical items in combination with Internet of 
Things (IoT) developments to further automate farm 
operations. Dairy farms have embraced technological 
innovations and procured vast amounts of permanent data 
streams during the past decade; however, the integration of this 
information to improve the whole farm decision-making 
process does not exist. It is now imperative to develop a system 
that can collect, integrate, manage, and analyze on-farm and 
off-farm data in real-time for practical and relevant 
environmental and economic actions. The developed systems, 
based on machine learning and artificial intelligence, need to be 
connected for useful output, a better understanding of the whole 
farming issue and environmental impact. Evolutionary 
Computing (EC) can be very effective in finding the optimal 
combination of sets of some objects and finally, in strategy 
determination. The system of the future should be able to 
manage the dairy farm as well as an experienced dairy farm 
manager with a team of the best agricultural advisors. All these 
changes should bring resilience and sustainability to dairy 
farming as well as improving and maintaining good animal 
welfare and the quality of dairy products. This review aims to 
provide an insight into the state-of-the-art of big data 
applications and EC in relation to smart dairy farming and 
identify the most important research and development 
challenges to be addressed in the future. Smart dairy farming 
influences every area of management and its uptake has become 
a continuing trend.  
 

Keywords—Big data, evolutionary computing, cloud, precision 
technologies. 

I. INTRODUCTION 
HE world of dairy farming is complex and changing fast. 
Dairy sector economics comprises knowledge from many 

different angles and sources [1]. The way animals are raised on 
farms has changed greatly over the past century including 
growth in farm size and increased technology [1]. The main 
characteristics of an ideal dairy system identified by the 
respondents in a study by Cardoso [2] were related to animal 
 

L. Krpalkova is with the Lero – the Science Foundation Ireland Research 
Centre for Software, Department of Agricultural and Manufacturing 
Engineering. School of Science Technology Engineering and Maths (STEM). 
Munster Technological University, Clash, Tralee, Co. Kerry, Ireland 
(corresponding author, phone: 353-85220-1452; e-mail: 
lenka.krpalkova@staff.ittralee.ie).  

N. O' Mahony, A. Carvalho, S. Campbell, and J. Walsh are with the Lero – 
the Science Foundation Ireland Research Centre for Software, Department of 
Agricultural and Manufacturing Engineering. School of Science Technology 

welfare from two perspectives: consideration for the quality of 
life of the animals based on ethical arguments and the 
consequences of animal care on the quality of milk. In recent 
years, the world has witnessed a change in purchasing patterns, 
involving the consumer who is increasingly attentive to their 
health and to the quality of the food they buy [3]. Starting from 
the assumption that people are not consumers but citizens, the 
concept of Food Democracy is born, in which food is not 
considered a consumer good but a right and, as such, must be 
safe and nutritious, as well as produced and enjoyed in respect 
of the environment and of those who cultivated it [4]. 
Intercepting this need with a view to market opportunities leads 
the agri-food business to embrace the quantity-quality duo and 
to undertake sustainable production paths and voluntary 
traceability tools able to witness these choices. Voluntary 
traceability has two main objectives: food safety and quality 
[3].  

Innovative systems are required, to reconcile the need for 
farmers to earn a decent living, meet consumer demand for 
affordable and quality dairy products, reduce the environmental 
impact of dairy farming and improve animal health. 
Management decisions can be informed by near-real-time data 
streams to improve the economics, sustainability, environment, 
quality of final product, overall health and welfare of dairy herd 
[5].  

Decision support tools can use data and analytics from the 
farm and other available and useful sources [5]. As smart 
machines and sensors become more common on farms and farm 
data grow in quantity and scope, farming processes will become 
increasingly data-driven and data-enabled. Continuous 
developments in IoT and cloud computing are leading the 
phenomenon of what is called Smart Farming [6]. While 
Precision Agriculture is concerned with in-field/herd 
variability, smart farming goes beyond that by basing 
management tasks not only on location but also on data 
(enhanced by context) and situation (triggered by real-time 
events) awareness [7]. Real-time assistant reconfiguration 
features are necessary in a smart farming system in order to 
carry out agile actions, especially in cases of changed 
conditions on dairy farms or other circumstances (e.g., weather, 
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disease alert, feeding system and diet). These features typically 
include intelligent assistance in implementation, maintenance 
and use of the technology [6]. Fig. 1 summarizes the concept of 
smart dairy farming, incorporating smart connected devices, 
which inform control of the farm system. Smart devices extend 
conventional tools (e.g., rain gauge, milking parlor, tractor, 
notebook) by adding autonomous context-awareness with a 
suite of sensors and actuators with built-in intelligence, capable 
of executing autonomous or remote actions. Robots will play an 
important role in the control of the future dairy farm, but 
humans will always be involved in the whole process at a much 
higher intelligence level. The smart dairy farming cycle 
becomes almost autonomous and helps stabilize farmers’ 
income and maximize profit and sustainability of the dairy 
sector. Additionally, farmers of the future will be able to share 
information with different personnel, consultants, or others 
while being able to easily manage the level of data access [6].  
Industry 4.0 stems from the 4th industrial revolution and is 
defined as a process that leads to fully automated and 
interconnected industrial production [3]. Some of the 
technological phenomena typical of Industry 4.0, such as the 
IoT and analytics, are the most relevant in terms of impact on 
the market and will act as a driving force towards a real ‘4.0 
transformation’ during the next 10-15 years [3]. In the era of the 
4th industrial revolution, the use of digital technologies, thanks 
to the integration of data and the connection of resources, will 
allow the creation of an efficient and sustainable farm system. 

 

 
Fig. 1 The cycle of smart dairy farming enhanced by cloud-based 

event and data management 
 

The transfer of the Industry 4.0 paradigm to the agri-food 
industry will allow farmers to act concretely on the factors of 
production, speed up and improve the innovation process 
already introduced by the precision agriculture paradigm and 
bring overall benefits to this industry [8]. All these data 
generated from new technologies offer an opportunity for 
development of farm-specific models to help in the 
management decision-making process [9]. With the increasing 
amount of data available at the farm, there is a critical need to 
automatically integrate the different data sources within 
decision-making tools that can provide integrated advice to 
farmers and lead to more efficient dairy farm management [5]. 
The existing whole-farm models have structural and functional 
limitations and are inflexible in their structure and options, i.e., 

with regard to being able to integrate new modules. 
Furthermore, documentation and reported evaluations for 
existing whole-farm models are often incomplete and/or 
insufficient to support higher level of system management [9]. 
The lack of integration and subsequent separated analysis 
generate different problems, such as suboptimal use of on- and 
off-farm resources, increased risk of mistakes and failure, 
delays in optimal actions, lack of understanding for complex 
environmental and market issues, narrow vision of 
opportunities for improvement, and, ultimately, suboptimal 
profitability and consequently decreased sustainability and 
resilience [9]. Agricultural models present a number of 
difficulties with regard to optimization. These problems include 
complex relationships which are not conducive to the simpler 
forms of economic modelling, biological variability modelling, 
or the identification of suitable variables to be optimized. The 
high degree of complexity in these systems translates to high 
dimensionality of the search-space. Furthermore, the search-
space may contain multiple local optima, as very different 
combinations of management options can have similar 
economic outcomes [10]. Models of agricultural systems range 
widely on both temporal and spatial scale. Farm-level systems 
have typically been investigated, but models also range out to 
regional, industry and national scales. Short-term (within-year) 
profitability and cash-flow issues are common, but the 
timeframe can be extended to more years, to investigate 
sustainability and long-term effects. Any selected optimization 
method is required to deal with all these problems, and reliably 
returns the solution for the global optimum. Generally, 
evolutionary algorithms have proven superior for these tasks 
[10]. 

Big data and smart farming are relatively new concepts and 
their implications for research and development will continue 
to spread. Smart machines and sensors are improving and 
changing rapidly in this area and the state-of-the-art of that will 
probably be outdated soon after this paper is published. This 
review aims to provide an insight into the state-of-the-art of big 
data in relation to smart dairy farming and to identify the most 
important research and development challenges to be addressed 
in the future. The paper will be structured as follows: in the 
introductory section, the scenario of the current situation in 
dairy farming is reported. In the second section, the area of Big 
Data, Precision Livestock Farming, Edge and Cloud 
Computing and Smart Dairy Farming Management are 
discussed. Finally, the future trends and challenges in Dairy 
Farm Management and Evolutionary Computing are debated.  

II. BIG DATA 
In general, big data is a term for data sets that are so large or 

complex that traditional data processing applications are 
inadequate [11]. Big data is changing the scope and 
organization of farming through a pull-push mechanism and 
often includes data with sizes that exceed the capacity of 
traditional software to process within an acceptable time and 
value [7]. Big data is diverse, complex, and of a massive scale, 
and it means that such datasets require a set of techniques and 
technologies with new forms of integration to reveal insights 
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from datasets. Big data represents the information that requires 
specific technology and analytical methods for its 
transformation into value [11]. Big data challenges include not 
just the obvious issues of scale, but also heterogeneity, lack of 
structure, error‐handling, information privacy, updating, data 
source, capturing data, data storage, data analysis, search, 
sharing, transfer, querying and visualization, at all stages of the 
analysis pipeline from data acquisition to result interpretation. 
When we handle big data, we observe and track what happens 
[11]. Global issues such as food security and safety, 
sustainability, environmental impact and as a result efficiency 
improvement are currently being enhanced by big data 
applications. These issues mean that the scope of big data 
applications extends far beyond dairy farming alone but covers 
the entire supply chain including customers’ requests. 
Thankfully we now have IoT in action. All kind of objects and 
devices that are producing many new and real-time accessible 
data are connecting wirelessly [7]. This applies to all stages in 
the smart dairy farming cycle (Fig. 1). Analytics is the main 
success factor in creating value out of these data. Many 
innovative start-up companies are eager to sell and deploy all 
kinds of applications (e.g., sensor deployment, benchmarking, 
predictive modeling, and risk management) [6]. 

III. PRECISION LIVESTOCK FARMING 
Precision livestock farming can be defined as real-time 

monitoring technologies aimed at managing the temporal 
variability of the smallest manageable production unit, known 
as ‘the per animal approach’. With intense advancements in 
Computer Vision (CV) and Artificial Intelligence (AI), there 
has arisen an array of opportunities for these technologies to 
become even more useful in monitoring the needs and behavior 
of every animal and also allow robotics to interact with animals 
safely. Applications include the automatic monitoring of cattle 
by intelligent camera surveillance technology, and the 
automation of tasks such as herding, milking, feeding, and 
bedding. This indicates that the automated device could be used 
to measure the body condition of cows accurately and 
objectively with little effort [12]. Further, automatically 
recorded longitudinal sensor data could be a proper alternative 
for cow phenotyping in extensive grassland systems, aiming 
towards an accurate data basis for genetic evaluations [13]. 
Finally, some of the smart farm decision technologies will be 
able to substitute actual farm management and will learn as it 
goes by applying complex machine learning approaches and 
exploiting the interdependencies of the complex integrated 
biological, physical, technological, environmental and 
informational dimensions of dairy farm systems [5]. The system 
can be organized from tissue level going down to cell, 
organelle, and molecule and could also go up to organ, 
organism, and herd levels—eventually simulating an entire 
farm or even an entire region [9]. AI will be used to predict the 
outcome of various management options more accurately and 
also evaluate the achievement and sustainability of farmers’ 
targets [5]. According to Grinter et al. [14], it is important to 
validate all precision dairy technologies to understand their 

precision and accuracy before taking measurements or applying 
them to cattle management or research. 

Machine-generated (MG) data is typically well-structured 
and derived from the vastly increasing number of sensors and 
smart machines used to measure and record farming processes. 
The IoT boosted this development. MG data are well-structured 
and suitable for computer processing, but its size and speed are 
beyond traditional approaches, and therefore, it is becoming an 
increasingly important component of farming to store and 
process this information in the proper manner [6].  

IV. EDGE AND CLOUD COMPUTING 
The computing platforms can be added to the agricultural 

systems, but they are not architected to process MG volumes of 
data in real-time. It is also expensive and difficult to scale them 
up to the level required for training highly iterative data-driven 
machine learning models and algorithms. Cloud computing 
platforms are perfectly suited for such tasks due to their 
scalability and elasticity. However, this requires sending large 
volumes of MG data to the cloud [15]. However, many recent 
user centric IoT applications are latency sensitive or require 
real-time data analysis and decision making, scenarios where 
cloud computing could not be applied due to latency problems 
[16].  

Also, large amounts of data are transmitted to the cloud, used 
only once without providing much insight, and it is not possible 
to leverage the same in the future for additional analysis. Hence, 
processing such data at the edge and transmitting only the data 
insights can help in saving the cost of data transmission and 
storage [15].  

Cost of data transmission is sometimes the most critical 
factor determining the adoption of edge computing for certain 
scenarios. This is especially important for use-cases, where data 
are collected at high frequencies and the cost of such data 
transmission is very high. In such scenarios, the industry is 
moving towards adoption of Edge Computing to make analysis 
and decisions at the edge, and only transmit alerts and 
notifications related to security incidents to the central hub 
[15].  

These solutions are typically used in vertically integrated 
applications. The processing and analytics of the data happens 
on the edge device and the cloud is used for coordination and 
data archival [15]. The central cloud piece is still necessary to 
help coordinating all the edge activity [16]. These 
advancements benefit the development of smart dairy farming 
cycle (Fig. 1), a technology where every physical entity has a 
digital twin in the virtual world, and also enable the move from 
centralized control, configuration and management of machines 
to autonomous and decentralized solutions [15]. 

V. SMART DAIRY FARMING MANAGEMENT 
According to Wolfert et al. [6] management or control 

processes ensure that the business process objectives are 
achieved, even if disturbances occur. A controller that measures 
system behavior corrects if measurements are not compliant 
with system objectives.  
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The breadth of the areas of management which can be 
influenced by smart dairy farming continues to grow. Table 1 
provides an overview of current big data applications in relation 
to different elements of smart dairy farming.  

The main data products along the big data value chain are 
(predictive) analytics that provide decision support to dairy 
farm processes at various levels. The first prerequisite is that 
these analytics based on sensor or similar data must somehow 
fit into existing or reinvented dairy farm processes [6].  
 

TABLE I 
EXAMPLES OF BIG DATA APPLICATIONS/ASPECTS IN SMART DAIRY FARMING 

PROCESSES 
Cycle of Smart 

Farming Applications 

Smart sensing 
and monitoring 

Accelerometers (behavior) [11], [14], [35] 
Biometric sensing [33] 

Body Condition Score [12] 
Farm’s carbon footprint [26] 

GPS tracking [33] 
Growth of dairy calves [31] 

Health [18], [29] 
Locomotion Score [12], [36] 

Milk robots and production [12], [20] 
Monitoring (identification of cows, safety, and 

quality of final product) [12], [25], [32] 
Phenotyping [28] 
Reproduction [40] 

Smart analysis 
and planning 

Body Condition Score [12] 
Breeding and genetic [5], [17], [20] 

Efficiency in production [24] 
Growth of dairy calves [31] 
Health [5], [17], [24], [28] 

Locomotion Score [12], [36] 
Milk robots and production [5], [12], [17], 

[23], [27] 
Monitoring (identification of cows, safety, and 

quality of final product) [12], [34] 
Nutrition and feeding [5], [17] 

Phenotyping [21] 
Reproduction [30], [40] 

Whole-farm system [5], [11], [23], [37] 

Smart control 

Autonomous vehicles [12] 
Body Condition Score [12] 

Health [22], [30] 
Locomotion Score [12], [36] 

Milking robots and production [12], [22], [30], 
[33] 

Monitoring (identification of cows, safety, and 
quality of final product) [12] 

Nutrition and feeding [22], [30] 
Whole-farm system [5], [9], [17], [37] 

Big Data in the 
Edge and Cloud 

Farm’s carbon footprint [26] 
Health [30], [31], [34] 

Milk robots and production [5], [17], [20], [22] 
Monitoring (identification of cows, safety, and 

quality of final product) [25], [32] 
Nutrition and feeding [5], [17] 

Whole-farm system [15], [38], [39] 
 

According to Wolfert et al. [6], the smart dairy farming 
management system must have a feedback loop in which a 
norm, sensor, discriminator, decision-maker, and effector are 
present.  

A. The Current State of Dairy Management 
Dairy producers make strategic management decisions based 

on separate software tools with some even having computers 
dedicated to specific farm software [17]. The tools are not 
connected to each other even though all the data streams are 
interrelated. Farm managers need to visualize and interpret each 
of all these data streams and make integrated decisions. As an 
example, we can provide some analysis that comes from a 
milking and feeding system (Fig. 2), a reproduction monitoring 
system (Fig. 3), and health recording system (Fig. 4). When 
analyzed independently, the disparate data streams are 
informative and describe many of the activities that take place 
on a dairy farm (e.g., feeding management decisions, heat 
detection, somatic cell count in milk etc.). 

 

 

Fig. 2 Analysis of feed intake (kg/day), ratio of feed per 1 kg milk yield, relative milk yield (milk yield per 100 kg of body weight) and body 
condition score (sample analysis) 
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Fig. 3 Detection of heat using machine learning based on activity and progesterone data (sample analysis) 
 

 

Fig. 4 Analysis of somatic cell count (sample analysis) 
 

However, when they are integrated, they can generate even 
more important insights of different situations happening at the 
farm and improve decision making and farm management [17]. 
According to Græsbøll et al. [18], the productivity of the 
individual dairy cow is of central importance to dairy farmers: 
the most important metrics being her milk production, 
reproductive performance, and somatic cell count. Predictions 
of dairy farm productivity are important for making decisions 
on culling and replacements, feed management or health 
problems and these have a substantial influence on the economy 
of the farm. Cabrera et al. [17] added that decision making is 
crucial in business. Taking the right decision at the right time 
leads to success. The right decision alone is not sufficient, it has 
to be taken at the right time [17].  

New technologies are becoming available and are being 
developed to help the dairy industry improve the welfare and 
productivity of individual animals on dairy farms. They are 
“smart” but again they are not speaking to each other. The data 
are generated every day and farmers need to see the current 
situation on the farm every day without waiting or comparing a 
few analyses or even some written notes. In the future, the 
system needs to be able to filter out the noise and attach 
identifiers to each type of data and finally integrate this 
information to improve whole-farm decision-making in real-

time [5]. AI and machine learning approaches can be applied to 
all of a dairy farm’s data streams to analyze those data [17]. 
However, real-time integration of these data to improve whole-
farm management, leading to data-driven decision making in 
farming, has proven challenging [17]. 

VI. FUTURE OF DAIRY FARM MANAGEMENT  
Whole-farm models are valuable because they can evaluate 

different management strategy on farm and provide overall 
process control systems for sustainable production, 
environmental quality, water and nutrient use efficiency, energy 
efficiency and long-term profit. Whole-farm models will 
provide novel information to the scientific community about 
managing dairy production at a farm level instead of optimizing 
single-farm operations [9]. 

 

 
Fig. 5 New challenges of smart dairy farming 
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Fig. 5 summarizes the challenges of smart dairy farming in 
the near future, which mean that new sources of data and setting 
up a continuous process of data integration and analysis will 
substantially improve prediction abilities of a farm model. 
Furthermore, this next-generation model should be able to 
incorporate data of newly developed sensors and take full 
advantage of big data artificial intelligence, which will be the 
part of modern dairy farm systems. Data mining and deep 
learning will guide model development and validate 
performance. The “Inside farm” submodules will use data of 
soil and water composition, feed nutrition and energy, animal 
status (health, behavior, genetic, production, and reproduction) 
and barn ventilation/insulation. The newly developed sensors, 
laboratory techniques and subsequently developed algorithms 
will be able to control wellbeing of livestock (e.g., with 
algorithms for grouping strategies of cows). Insights gained on 
processes in animal tissues, organs and metabolisms will be 
used to evaluate which functionalities are important for high 
production, environmentally friendliness and good quality 
dairy products. The “Outside farm” submodules will use data 
of weather, market, possible diseases alerts, offer of new 
technologies and their impact on farm management practices, 
welfare, safety and health standard of humans and animals and 
including the evaluation of societal benefit of more efficient 
production systems while reducing negative environmental 
impacts. Process control and strategy determination can be 
evaluated for one dairy farm, a few farms or all farms in a 
region, country, or world. The process control will vary from 
relatively simple feedback mechanisms to deep learning 
algorithms (e.g., to implement the right management or 
scheduling). The evaluation of short-term and long-term effects 
of the mentioned submodules will also help better inform 
farmers, industry, and policy leaders on the environmental and 
economic impacts of adding, removing, or changing one or 
multiple dairy farm practices. The system in the future should 
be able to manage the dairy farm as well as an experienced dairy 
farm manager with a team of the best agricultural advisors. All 
the integrated information from the data will be able to improve 
whole-farm decision-making as well as improve the welfare of 
animals, food safety and quality. The final step will be to apply 
all found algorithms (inside and outside farm submodules) to 
create intuitive, cloud-based decision-support tools that allow 
farmers to use real-time data from their farms to make smarter 
and complex management decisions with emphasis on either 
the short-term or long-term effect. 

Maintaining a flexible architecture is a critical design 
component to maintain relevance in an evolving digital 
landscape. The challenges associated with scaling a service are 
certainly multifaceted, but when building an API-based system 
where data integration and processing is the primary value-add, 
there must be a high level of coordination between participating 
entities to begin with. There must exist an ontology between 
data generators along the entire dairy management chain [5]. 

VII. EVOLUTIONARY COMPUTING  
The whole-farm model should provide all three types of 

analytics: descriptive, predictive, and prescriptive. Descriptive 

analytics often take the form of key performance indicators and 
provide some summarization, which in the dairy industry might 
include income over feed costs, feed efficiency measures, or 
disease occurrence. Predictive analytics involve forecasts of 
what they are likely to be in the future, rather than a 
summarization of their values in the past. Prescriptive analytics 
often tackle more complicated decisions and trade-offs and can 
integrate one or more predictive analyses or data streams to 
inform how to best reach a goal [5]. Especially with the last 
analysis, evolutionary algorithms and scheduling can be very 
useful in these applications. An example could be to suggest 
and predict: 
1. What is the optimal vehicles driving cycle on the farm? 
2. What herd health level, herd size, breed composition 

(breeding values), nutrition efficiency and weather 
conditions are needed to reach targeted production or 
profitability? 

3. What to use for farm strategies concerning the different 
market, environment, climate condition, customers’ 
demand, farm sustainability and future development 
(short-time or long-time effect)? 

4. How to improve the quality of milk (milk composition, 
SCC)? 

5. How to improve the health of dairy cows? 
6. How to improve supply chain management among 

suppliers, facilities, warehouses and customers with the 
objectives of minimization of cost and maximization of 
customer services? 

In conclusion, the whole-farm model should be able to make 
optimal decisions in the short, medium and long-term to meet 
operational, tactical, and strategic goals and also learn as it goes 
by applying complex machine learning approaches and 
exploiting the complex interdependencies between inside and 
outside submodules (Fig. 5). According to Kebreab at al. [9], 
the prediction accuracy will improve as more data and more 
integrated live data streams become available. 

Evolutionary computing (EC) is effective in finding optimal 
solutions and is able to answer previous questions. EC is a type 
of machine learning that uses principles from nature to evolve 
solutions. In the case of genetic algorithms, there is a strong 
effect of randomness in EC. That means we use concepts from 
nature to help our software evolve a solution to a problem.  

The concept includes natural selection, which involves 
fitness, passing genes down from generation to generation via 
genetic crossover, and even passing genes with genetic 
mutations [15]. The genetic algorithm and genetic 
programming can be used in wide variety of situations not 
directly related to the nature. EC is very effective in finding an 
equation to fit a set of data, in a process control, problem design, 
task scheduling, finding the optimal combination of sets of 
some objects and finally, in strategy determination. According 
to Meyer [10], when using EC, it is possible to develop complex 
logic solutions, given a set of inputs. In this case a programmer 
can allow the genetic program to “play” and develop a solution 
by itself. 
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Fig. 6 The Process of Genetic Computing 

 
Fig. 6 shows how genetic computing works. The genetic 

algorithm and genetic programming begin by defining an initial 
population of randomly generated candidate solutions. The 
fittest candidates are selected for reproduction by some fitness 
function. Two parent candidates are crossed to form two child 
candidates for the next generation, and occasionally mutation is 
applied. The process is repeated until after a certain number of 
generations, the candidate with the best fitness is chosen as the 
ultimate solution to the problem.  

A. Genetic Algorithm vs. Genetic Program 
In a genetic algorithm each candidate contains data in a linear 

form. The candidate data is interpreted in some way to 
determine fitness, which is typically a fairly simple process, 
and, since we are dealing with a particular set of data, the 
solution is always an answer to one particular problem rather 
than a general approach. Genetic programming contains 
computer instructions rather than data, and those instructions 
are arranged in a tree form. To test the fitness of a candidate, 
the program is actually run, sometimes inside of a simulator, 
sometimes stand-alone. The final, best solution found can then 
be used with different parameters like any other sub-routine or 
program [19]. 

B. Solution Space and NP – Hardness 
The solution space is a set of possible solutions to a given 

problem. Most of the problems typically have a small solution 
space. For example, for writing an application to collect data 
from a user and store it in database, there are not a lot of 
distinctly different approaches to solve that problem. The 
solution space is therefore said to be small. There are, however, 
entire classes of problems with very large solution spaces, 
meaning there are many viable solutions. It can be, for example, 
for strategy determination for a dairy farm (Fig. 5). 

There is a branch of mathematics that studies this type of 
problem, which is often referred to as NP-hard or NP-hardness, 
which is short for non-deterministic polynomial-time hardness. 
NP-hardness refers to a class of problems that are difficult to 
find a solution for. Non-deterministic means that for any given 
attempt to solve a problem you may end up with a different 
solution. The polynomial-time refers to measuring how long it 
takes to find a solution. Obviously, the bigger your solution 
space, the more important the time it takes to find a solution 
[10]. 

Regarding agricultural systems models, increasingly more 
researchers are finding that mathematical programming 
methods are not well suited. In some situations, these methods 
contribute adequate strategies, but there are many cases where 
these assumptions lead to very poor (high cost) solutions to the 
real problem. Having invested considerable time and effort in 
the planning, formulation, verification, and validation of a 
general farm model to simulate the target system, there is the 
next problem of optimization. Searching the feasible space of 
available management options and coming up with the global 
optimum is a difficult task, especially as the data streams and 
complexities of the problem increase. However, EC appear 
well-suited for this task, as they are amongst the most efficient 
of the available optimization methods. Overall, by considering 
a population of solutions, they allow for the identification and 
investigation of near-optimal strategies, which may also be of 
interest to the dairy farm manager [10]. 

VIII. CONCLUSION 
Big data and EC will cause major changes in the scope and 

organization of a dairy farm. Resilience, sustainability, quality, 
well-being for humans and animals are keywords for the future 
of the dairy sector. The data analytics are being developed at a 
scale and speed that has never been seen before. Referring to 
Fig. 1 and Fig. 5, it can be expected that farm management and 
operations will drastically change by accessing real-time data, 
real-time forecasting and tracking of physical items and IoT 
developments in further automating farm operations. However, 
all these changes should bring permanent operational and 
strategic decision-making benefits to farmers to help them earn 
a decent living, manage consumer demand for affordable and 
good quality dairy products, and adhere to 
environmental/animal health requirements. 

Future publications are expected to bring more practical 
details about the application of the EC techniques to smart dairy 
farming.  
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