Search results for: material characterisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1963

Search results for: material characterisation

463 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
462 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: Compressive strength, coupling effect, statistical analysis, ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
461 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies

Authors: Babak Mohajeri, Sen Bao, Timo Nyberg

Abstract:

Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.

Keywords: Customer experience management, paper machine risk analysis, value chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
460 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: Impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
459 Radiation Damage as Nonlinear Evolution of Complex System

Authors: Pavlo Selyshchev

Abstract:

Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.

Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
458 Characterization of Ajebo Kaolinite Clay for Production of Natural Pozzolan

Authors: Gbenga M. Ayininuola, Olasunkanmi A. Adekitan

Abstract:

Calcined kaolinite clay (CKC) is a pozzolanic material that is current drawing research attention. This work investigates the conditions for the best performance of a CKC from a kaolinite clay source in Ajebo, Abeokuta (southwest Nigeria) known for its commercial availability. Samples from this source were subjected to X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). XRD shows that kaolinite is the main mineral in the clay source. This mineral is responsible for the pozzolanic behavior of CKC. DSC indicates that the transformation from the clay to CKC occurred between 550 and 750 oC. Using this temperature range, clay samples were milled and different CKC samples were produced in an electric muffle furnace using temperatures of 550, 600, 650, 700, 750 and 800 oC respectively for 1 hour each. This was also repeated for 2 hours. The degree of de-hydroxylation (dtg) and strength activity index (SAI) were also determined for each of the CKC samples. The dtg and SAI tests were repeated two more times for each sample and averages were taken. Results showed that peak dtg occurred at 750 oC for 1 hour calcining combination (94.27%) whereas marginal differences were recorded at some lower temperatures (90.97% for 650 oC for 2 hours; 91.05% for 700 oC for 1 hour and 92.77% for 700 oC for 2 hours). Optimum SAI was reported at 700 oC for 1 hour (99.05%). Rating SAI as a better parameter than dtg, 700 oC for 1 hour combination was adopted as the best calcining condition. The paper recommends the adoption of this clay source for pozzolan production by adopting the calcining conditions established in this work.

Keywords: Calcined kaolinite clay, calcination, optimum-calcining conditions, pozzolanity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
457 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes, and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 400-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence was obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
456 Evaluation of Eulerian and Lagrangian Method in Analysis of Concrete Gravity Dam Including Dam Water Foundation Interaction

Authors: L. Khan mohammadi, J. Vaseghi Amiri, B. Navayi neya , M. Davoodi

Abstract:

Because of the reservoir effect, dynamic analysis of concrete dams is more involved than other common structures. This problem is mostly sourced by the differences between reservoir water, dam body and foundation material behaviors. To account for the reservoir effect in dynamic analysis of concrete gravity dams, two methods are generally employed. Eulerian method in reservoir modeling gives rise to a set of coupled equations, whereas in Lagrangian method, the same equations for dam and foundation structure are used. The Purpose of this paper is to evaluate and study possible advantages and disadvantages of both methods. Specifically, application of the above methods in the analysis of dam-foundationreservoir systems is leveraged to calculate the hydrodynamic pressure on dam faces. Within the frame work of dam- foundationreservoir systems, dam displacement under earthquake for various dimensions and characteristics are also studied. The results of both Lagrangian and Eulerian methods in effects of loading frequency, boundary condition and foundation elasticity modulus are quantitatively evaluated and compared. Our analyses show that each method has individual advantages and disadvantages. As such, in any particular case, one of the two methods may prove more suitable as presented in the results section of this study.

Keywords: Lagrangian method, Eulerian method, Earthquake, Concrete gravity dam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
455 An Integrated Supply Chain Management to Manufacturing Industries

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.

Keywords: Supply Chain, Supply Chain Management, Supply Chain Integration, Manufacturing Industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3989
454 Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon

Authors: Olayinka Omotosho, Anthony Amori

Abstract:

Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.

Keywords: Zinc chloride, cassava peels, activated carbon, bamboo waste, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
453 Periodic Topology and Size Optimization Design of Tower Crane Boom

Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng

Abstract:

In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.

Keywords: Tower crane boom, topology optimization, size optimization, periodic, soft kill option, optimization criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
452 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
451 Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations

Authors: M. Jayakumar, Lau Chee Sing

Abstract:

The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.

Keywords: Pavement failure, soft soil, sustainability, stabilization, fly ash, strength and permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
450 Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

Authors: N. Massoum, B. Bouazza, H. Tahir, C. Sayah, A. Guen Bouazza

Abstract:

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Keywords: Monte Carlo simulation, steady-state electron transport, transient electron transport, alloy scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
449 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh

Abstract:

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Keywords: Fouling, membrane, polyphenols, ultrafiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388
448 Seasonal Influence on Environmental Indicators of Beach Waste

Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman

Abstract:

The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.

Keywords: Beach solid waste, environmental indicators, quali-quantitative analysis, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
447 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: Large strain, compression-tension, loading-unloading, Mg alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
446 Identification of Micromechanical Fracture Model for Predicting Fracture Performance of Steel Wires for Civil Engineering Applications

Authors: Kazeem K. Adewole, Julia M. Race, Steve J. Bull

Abstract:

The fracture performance of steel wires for civil engineering applications remains a major concern in civil engineering construction and maintenance of wire reinforced structures. The need to employ approaches that simulate micromechanical material processes which characterizes fracture in civil structures has been emphasized recently in the literature. However, choosing from the numerous micromechanics-based fracture models, and identifying their applicability and reliability remains an issue that still needs to be addressed in a greater depth. Laboratory tensile testing and finite element tensile testing simulations with the shear, ductile and Gurson-Tvergaard-Needleman’s micromechanics-based models conducted in this work reveal that the shear fracture model is an appropriate fracture model to predict the fracture performance of steel wires used for civil engineering applications. The need to consider the capability of the micromechanics-based fracture model to predict the “cup and cone” fracture exhibited by the wire in choosing the appropriate fracture model is demonstrated.

Keywords: Fracture performance, FE simulation, Shear fracture model, Ductile fracture model, Gurson-Tvergaard-Needleman fracture model, Wires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
445 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: Recycled aggregate, pervious concrete, compressive strength, permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
444 Application of RP Technology with Polycarbonate Material for Wind Tunnel Model Fabrication

Authors: A. Ahmadi Nadooshan, S. Daneshmand, C. Aghanajafi

Abstract:

Traditionally, wind tunnel models are made of metal and are very expensive. In these years, everyone is looking for ways to do more with less. Under the right test conditions, a rapid prototype part could be tested in a wind tunnel. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done of fused deposition modeling (FDM) and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM for transonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM Technologies using polycarbonate to that of a standard machined steel model. Testing covered the Mach range of Mach 0.3 to Mach 0.75 at an angle-ofattack range of - 2° to +12°. Results from this study show relatively good agreement between the two models and rapid prototyping Method reduces time and cost of production of wind tunnel models. It can be concluded from this study that wind tunnel models constructed using rapid prototyping method and materials can be used in wind tunnel testing for initial baseline aerodynamic database development.

Keywords: Polycarbonate, Fabrication, FDM, Model, RapidPrototyping, Wind Tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
443 Prediction of Slump in Concrete using Artificial Neural Networks

Authors: V. Agrawal, A. Sharma

Abstract:

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).

Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3598
442 Deterioration Assessment Models for Water Pipelines

Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh

Abstract:

The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.

Keywords: Water pipelines, deterioration assessment models, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
441 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites

Authors: Siong W. Lee, Kang H. Tan, En H. Yang

Abstract:

This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.

Keywords: Bond stress, high performance fiber reinforced cement composites, slip, strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
440 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
439 Preliminary Studies of MWCNT/PVDF Polymer Composites

Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.

Keywords: Composites materials, FTIR, MWNTs, PVDF, UVVis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
438 Life Cycle Assessment of Expressway Passenger Transport Service: A Case Study of Thailand

Authors: Watchara Surawong, Cheema Soralumn

Abstract:

This research work is concerned with the life cycle assessment (LCA) of an expressway, as well as its infrastructure, in Thailand. The life cycle of an expressway encompasses the raw material acquisition phase, the construction phase, the use or service phase, the rehabilitation phase, and finally the demolition and disposal phase. The LCA in this research was carried out using CML baseline 2000 and in accordance with the ISO 14040 standard. A functional unit refers to transportation of one person over one kilometer of a 3-lane expressway with a 50-year lifetime. This research has revealed that the construction phase produced the largest proportion of the environmental impact (81.46%), followed by the service, rehabilitation, demolition and disposal phases and transportation at 11.97%, 3.72% 0.33% and 2.52%, respectively. For the expressway under study, the total carbon footprint over its lifetime is equivalent to 245,639 tons CO2-eq per 1 kilometer functional unit, with the phases of construction, service, rehabilitation, demolition and disposal and transportation contributing 153,690; 73,773; 3693, 755 and 13,728 tons CO2-eq, respectively. The findings could be adopted as a benchmark against which the environmental impacts of future similar projects can be measured.

Keywords: Environmental impact assessment, Life cycle assessment, LCA, Expressway passenger transport service, Carbon footprint, Eco-friendly expressway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
437 Implementation of A Photo-Curable 3D Additive Manufacturing Technology with Coloring Gray Capability by Using Piezo Ink-Jet

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J .W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. 

Keywords: 3d printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
436 Hazardous Waste Management of Transmission Line Tower Manufacturing

Authors: S.P.Gautam, P.S.Bundela, R.K. Jain, V. N. Tripathi

Abstract:

The manufacturing transmission line tower parts has being generated hazardous waste which is required proper disposal of waste for protection of land pollution. Manufacturing Process in the manufacturing of steel angle, plates, pipes, channels are passes through conventional, semi automatic and CNC machines for cutting, marking, punching, drilling, notching, bending operations. All fabricated material Coated with thin layer of Zinc in Galvanizing plant where molten zinc is used for coating. Prior to Galvanizing, chemical like 33% concentrated HCl Acid, ammonium chloride and d-oil being used for pretreatment of iron. The bath of water with sodium dichromate is used for cooling and protection of the galvanized steel. For the heating purpose the furnace oil burners are used. These above process the Zinc dross, Zinc ash, ETP sludge and waste pickled acid generated as hazardous waste. The RPG has made captive secured land fill site, since 1997 since then it was using for disposal of hazardous waste after completion of SLF (Secured land fill) site. The RPG has raised height from ground level then now it is being used for disposal of waste as he designed the SLF after in creasing height of from GL it is functional without leach ate or adverse impacts in the environment.

Keywords: Disposal, Drilling, Fabricated. Hazardous waste, Punching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
435 A Review on the Usage of Ceramic Wastes in Concrete Production

Authors: O. Zimbili, W. Salim, M. Ndambuki

Abstract:

Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution); the cement blend performs better, with no morphological difference between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.

Keywords: Blended, morphological, pozzolanic properties, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8795
434 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles

Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar

Abstract:

The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.  

Keywords: Combustion chamber, injector, liquid rocket, rocket engine wall heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503