
 

 

  
Abstract—Irradiated material is a typical example of a complex 

system with nonlinear coupling between its elements. During 
irradiation the radiation damage is developed and this development 
has bifurcations and qualitatively different kinds of behavior.  

The accumulation of primary defects in irradiated crystals is 
considered in frame work of nonlinear evolution of complex system. 
The thermo-concentration nonlinear feedback is carried out as a 
mechanism of self-oscillation development. 

It is shown that there are two ways of the defect density evolution 
under stationary irradiation. The first is the accumulation of defects; 
defect density monotonically grows and tends to its stationary state 
for some system parameters. Another way that takes place for 
opportune parameters is the development of self-oscillations of the 
defect density. 

The stationary state, its stability and type are found. The 
bifurcation values of parameters (environment temperature, defect 
generation rate, etc.) are obtained. The frequency of the self-
oscillation and the conditions of their development is found and 
rated. It is shown that defect density, heat fluxes and temperature 
during self-oscillations can reach much higher values than the 
expected steady-state values. It can lead to a change of typical 
operation and an accident, e.g. for nuclear equipment. 
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I. INTRODUCTION 
RRADIATED material is a typical example of a complex 
system. Firstly, the influence of irradiation has a complex 

synergistic character. A lot of phenomena take place in 
material under irradiation. The ion and electron subsystems 
are excited. The material is heated. Different damages of 
crystal lattice which drive the microstructure and macroscopic 
properties changes are created. Secondly, structure, 
composition, and properties are altered over an extremely 
wide scale, spanning microscopic processes, meso-scale 
microstructures and macroscopic properties. All these 
phenomena are inherently connected with essential nonlinear 
coupling, it is often impossible to indicate the most dominant 
of them [1]. 

One of the most important consequences of radiation 
influence is the creation of primary radiation defects, namely: 
interstitial atoms, vacancies and their small clusters, small 
vacancy and interstitial loops. During irradiation the structure 
of the radiation damage becomes more and more complex. It 
is developed and its development is nonlinear. The radiation 

 
P. A. Selyshchev is with the Department of Physics University of Pretoria 

Private bag X20 Hatfield 0028 South Africa (phone: 012-420-6641; fax: 012-
362-5288; e-mail: pavel.selyshchev@up.ac.za).  

This work was made possible by support from NRF of South Africa. 

damage evolution is driven with nonlinear feed-backs and has 
qualitatively different ways and bifurcations. The system may 
depend crucially on the numerical values of certain 
parameters, namely the condition of irradiation and material 
properties. For instance, the number of stationary states of the 
system or quality character of its behavior may change 
abruptly as value of a parameter is changed. 

It is usually expected that the stationary state is realized 
under stationary external conditions. But this statement is not 
always true for open complex systems with nonlinear feed-
backs. Under certain opportune conditions the steady state can 
become unstable with respect to the development of non-
stationary states, e.g. self-oscillations [2].  

Let us consider an irradiated sample under stationary 
conditions of irradiation. The crystal defects (vacancies, 
interstitial atoms, etc.) are created and accumulated in the 
sample as a result of irradiation. The significant energy that is 
equal to the energy of defect formation is accumulated in the 
sample too. During defect annealing (recombination, 
absorption by sinks) the accumulated energy is converted into 
heat. The irradiated sample is also heated due to the relaxation 
of various radiation induced excitations. As a rule a big part of 
the energy of irradiation transforms into heat. Another small 
part of the energy of irradiation (about several percent) 
expends to form the radiation defects. The environment 
temperature is fixed. The rate of defect generation and heating 
are constant.  

A mechanism of instability and the development of the self-
oscillations is the thermo-concentration nonlinear feedback. 
Let a small increase of the defect annealing arise as a result of 
small fluctuation. When defect annealing increases, the energy 
that is stored by radiation defects is released into heat and the 
temperature of the sample increases too. As a result, the 
diffusion of the defects grows, and annealing increases 
further. The positive feed-back is formed. The temperature 
grows quickly and the concentration of defects drops, thus 
defect annealing and the release of energy drops too. The 
sample cools and the radiation defects are accumulated 
slowly. After that all processes are repeated. Self-oscillations 
of the defect density and the sample temperature are 
developed. Thus there are two ways of the defect density 
change under stationary irradiation. The first is the 
accumulation of defects; defect density monotonically grows 
and aims for the some constant value. The second is the 
development of self-oscillations of the defect density. 
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A theoretical research of the self-oscillations is developed 
via Poincare formalism within the framework of dynamics of 
complex system on the plane. 

II. MODEL AND BASIC EQUATIONS 
Let us consider a crystal that has a shape of a plane-parallel 

plate. The plate thickness is l. The environment temperature is 
kept constant and equal to Те. Due to irradiation the defects 
are created in the crystal with a rate of K and the crystal heats 
with a rate of Q. The defects recombine and are absorbed by 
dislocations. When a defect is absorbed, some energy releases. 
It is approximately equal to the energy of the defect formation.  

The absorption of interstitial atoms is much more than 
vacancies since the diffusion of the interstitial atoms is much 
quicker than the one of the vacancies. Thus the concentration 
of the interstitial atoms is much more than the vacancy 
concentration. It allows us to neglect recombination and take 
into account the vacancies only. 

The change of the vacancy density n(x,t) and the 
temperature of the crystal T(x,t) are described by equations 
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The boundary conditions are  

 
00 =

=xJ , ( )elxlx TThJ −−=
== 2/2/ ' . 

 
TJ ∇−= κ  is the heat flux, where κ is thermal conductivity 

of the crystal. Value h’ is the heat transfer coefficient between 
the crystal and the environment, c is the crystal heat capacities 
per unit of mass. )()( TDT dρβ =  is the inverse lifetime of 
defects with respect to absorption by dislocations, and the 
dislocation density is ρd. The equation 

)/exp()( 0 TEDTD m−=  is the diffusion coefficient of 
defects; Еm is the energy of their migration. The parameter θ is 
the energy of the defect formation. 

We use symmetry and take into account that the flux of the 
defects on boundary is equal to zero because the absorption of 
defects by the plate surface compared to their absorption by 
the internal sinks is neglected. The nonlinear terms (the third 
in right side of (1) and (2)) connect these equations and 
describe the nonlinear feedback between the defect density, 
the rate of annealing and the temperature. 

If the internal plate is so thin that 14/ <<′ κlh , the 
temperature and the defect density are approximately 
constants. Then the average defect density n and average plate 
temperature T are described by the system of equations.  

nTK
dt
dn

)(β−=  (3) 

))()((1
eTThnTQ

cdt
dT

−−+= θβ  (4) 

 
Here h=2h’/l. The heating rate is proportional to the 

intensity of the irradiation, therefore it is proportional to the 
rate of the defect generation: KQ ξθ= . The parameter ξ is the 
ratio of the energy of irradiation which transforms into heating 
and the energy of irradiation which transforms into defect 
generation.  

The system (1) - (2) is nonlinear due to the exponential 
dependence of β on the temperature. 

III. STATIONARY STATE AND ITS STABILITY 
There is only one possible stationary solution of (3) - (4) 

(critical point) that describes the stationary homogeneous 
temperature and the density of defects under irradiation,  

 
( )ss TKn β/=  (5) 
( ) hKTT es /1++= ξθ  (6) 

 
The stationary solution (3) – (4) is realized if it is stable. To 

exam the stability let us consider the evolution of its small 
perturbations δn and δT. The damping decrement of the small 
perturbations satisfies the equation 

 

qpp −±−= 2λ  (7) 
 
Where 
 

( )( ) 2// 2
ssm TcTEKchp βθ +−=  (8) 

( ) cThq s /β=  (9) 
 
The value of q is positive for all physically admissible 

values. The value of p has a variable sign. If ∞→K  and 
∞→eT , then p> 0 and therefore Reλ<0. So the stationary 

distribution is stable. With decreasing values of K and Te the 
condition of p> 0 can be broken, and the stationary 
distribution becomes unstable. 

The stationary distribution becomes unstable if inequality  
 

( )( ) ( )( )2/1 hKTTchKE esm +++≥ ξθβθ  (10) 
 

is satisfied.  
Let all parameters be constants except the environment 

temperature (Te) and the defect production rate (K). The space 
of these parameters can be divided into two fields. For the 
parameters from the first field the stationary homogeneous 
distribution of defects is stable and it takes place under 
irradiation. For the parameters from the second field it 
unstable and is not realized. Parametric equations for 
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bifurcation curve are the following: 
 

( )( ) mETchTK θβ+= 2  (11) 

( ) ( )( ) me hETchTTT βξ ++−= 12  (12) 
 

where sample temperature T is parameter.  
The bifurcation value of the environment temperature is 

limited from above, since the second term in (12) for large 
values of T begins to dominate.  

The maximum temperature of the irradiated sample T = Tmax 
for the area of instability satisfies the equation 

 
( ) ( )( ) 011 maxmax =++− mhETchT βξ  (13) 

 
In this case, the bifurcation value of the defect generation 

rate also reaches maximum value  
 

( )θξ 1maxmax += ThK  (14) 
 
The line which corresponds to the isotherm maxTT =  

passes over the bifurcation curve, crossing it only at Te = 0 
and K = Kmax. 

The maximum temperature of the environment for the area 
of instability, max

eT , which corresponds to the defect 
generation rate K=K* and the temperature of the irradiated 
sample, Т=Т* satisfies the equations 

 
( )( ) ( ) ( )12 *** +=+− ξββ mm hEETcTchT  (15) 

( )( ) mETchTK θβ *2** +=  (16) 

( ) hKTTe θξ 1**max +−=  (17) 
 
The topological type of a stable critical point far away from 

the bifurcation curve is a stable node. It transforms into a 
stable spiral point near the bifurcation curve. On the 
bifurcation curve it transforms into a centre. 

Parametric equations for the boundary where the critical 
point is a stable spiral point are 
 

( ) ( )( ) mEThcTchTK θββ 22 −+=  (18) 

( ) ( ) ( )( ) me hEThcTchTTT ββξ 212 −++−=  (19) 
 
The topological type of an unstable critical point is an 

unstable spiral or a node. 

IV. SELF-OSCILLATIONS AND THEIR PARAMETERS 
The stable spiral becomes unstable when parameters pass 

through the bifurcation curve. Since for any parameters there 
is a loop without contact which covers the stationary point (5) 
– (6) and all phase trajectories of the system (3) - (4) go inside 
the loop there is a limit cycle of the system (3) - (4). Thus self-
oscillations of the temperature and the defect density are 

developed. 
The period of oscillations near the bifurcation curve is  
 

βπτ hc2=  (20) 
 
Thus, the period of oscillation is the square root of the 

product of the lifetime of defects and the characteristic time of 
sample cooling. 

There is a phase difference between oscillations of defect 
density and temperature. The expression for the cosine of the 
phase difference is given by: 
 

βϕ hc+−= 11cos  (21) 
 
If the heat capacity or the thickness of the irradiated plate is 

reduced, the period of self-oscillations decreases. The period 
increases together with an increase of the heat transfer 
coefficient. The period of oscillation depends on the pre-
exponential factor of the diffusion coefficient and practically 
doesn’t depend on the energy of the defect migration and the 
energy of the defect formation. In crystals with higher density 
sinks the region of instability is less and the frequencies of the 
self-oscillations are higher. 

The parameters of self-oscillation are obtained for several 
kinds of metals (lead and aluminum) and non-metals (silicon). 
It shows the following facts. Stability diagram for different 
materials are similar. The highest environmental temperatures 
at which self-oscillations develops are about 100 - 200 K, at 
defect generation rate about 10-3dpa/s. The temperature of the 
sample for these parameters is about 300 K. The frequency of 
oscillation is about 10-3 – 10-2 s-1. For example, the highest 
environment temperature at which self-oscillation develops in 
a lead sample is equal to 173K, at defect generation rate 1.3 
10-3dpa/s. The temperature of the sample for these parameters 
is equal to 273 K. The frequency of oscillation is equal to 
0.12s-1. If the ratio ξ increases, the region of instability 
expands and the frequency of the self-oscillations increases 
too. During the development of the self-oscillations the 
temperature of the sample, heat transfer and the defect density 
can exceed the steady-state value by several times. 

The region of the instability increases for more complex 
systems. They are the systems that take into account the 
secondary defect formation, e.g. complexes of the defects, 
voids, etc. The lifetime of secondary defects is much more 
than lifetimes of primary one. Thus the period of self-
oscillation for more complex system grows considerably and 
can reach several days.  

V.  CONCLUSION 
The examination of the nonlinear evolution of a complex 

system on the example of the accumulation of defects in 
irradiated crystals shows that there are two possible ways of 
evolution which are realized for different values of the system 
parameters. The defect density may monotonically grow and 
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tends to its stationary state or may non-monotonically tend 
into self-oscillation.  

The defect density, heat fluxes and the temperature during 
self-oscillations can reach much higher values than the 
expected steady-state values. It can lead to change of typical 
operation and an accident, e.g. for a nuclear reactor. 
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