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Prediction of Slump in Concrete using Artificial
Neural Networks
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Abstract—High Strength Concrete (HSC) is defined as concrete The Workability of concrete is one of the functiomisthe

that meets special combination of performance andommity

requirements that cannot be achieved routinely gusionventional
constituents and normal mixing, placing, and cupnocedures. It is
a highly complex material, which makes modelingoighavior a very
difficult task. This paper aimed to show possibfgplacability of

Neural Networks (NN) to predict the slump in Highrehgth

Concrete (HSC). Neural Network models is constdicteained and
tested using the available test data of 349 diffel@ncrete mix
designs of High Strength Concrete (HSC) gatherenhfa particular
Ready Mix Concrete (RMC) batching plant. The mostsuatile
Neural Network model is selected to predict thengluin concrete.
The data used in the Neural Network models arenge@in a format
of eight input parameters that cover the Cement, A8h, Sand,
Coarse Aggregate (10 mm), Coarse Aggregate (20 riviater,

Super-Plasticizer and Water/Binder ratio. Furtheendo test the
accuracy for predicting slump in concrete, thelfsglected model is
further used to test the data of 40 different ceteemix designs of
High Strength Concrete (HSC) taken from the othetching plant.
The results are compared on the basis of error titmc(or

performance function).

relative magnitudes of various concrete mix coustits.
SLUMP TEST is one of the tests which measure the
parameters close to workability and provide useful
information about it. It is the most commonly usedthod of
measuring consistency of concrete which can be @&yepl
either in lab or at the site. From this test, slusideduced by
measuring the drop from the top of the slumped hfres
concrete. Additional information on workability @oncrete
can be obtained by observing the shape of the slump
concrete [2].

Every type of construction requires testing of tomcrete
to determine the slump (of the fresh concrete) msuee,
whether the concrete is of desired workability atength or
not [3]. However, researchers have looked into
characteristic parameters that affect slump val@ieHigh
Strength Concrete. It was understood that propustiof
constituents in a concrete mix (i.e. Cement, Watantent,
Sand, Coarse aggregates, Fly Ash, and Super-Rias}ic

the

Keywords—Atrtificial Neural Networks, Concrete, prediction of affects workability and are determined on the basi®quired

slump, slump in concrete

[. INTRODUCTION

properties of concrete. Also, to obtain concretel@sired and
suitable workability, technical personnel oftenesriseveral
mix proportions, which is a time consuming processulting

ONCRETE is the major building material being us#d ain wastage of material and cost of concrete pradocfThus,
over the world. It is known for its high compressiv for the sake of saving time and decreasing thegdesost,

strength, durability, impermeability, fire resisten and
abrasion resistance. For contributing to maximurangjth of
the structure, hundred percent compaction of cdacie
necessary. The quality of concrete satisfying thmva
requirement is termed as Workability, (a paramegemix
designer requires to specify in the mix design essg which
is defined as the property of concrete determirhmg effort
required for placing, compaction and finishing wittinimum
loss of homogeneity. The effort required to placeoacrete
mixture is determined largely by the overall workeded to
initiate and maintain flow, which depends on theadlbgical
property of the lubricant (the cement paste) araititernal
friction between the aggregate particles on onelhand the
friction between concrete and the surface of taemméwork on
the other [1].
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help of Artificial Neural Networks (ANN) is takem tdevelop
models, so that the knowledge extracted from themgral
network models, can be utilized to predict slumpancrete.

The basic strategy for developing a neural netwsaked
model for predicting slump is to train a neuralwetk on the
results of a series of experiments (carried outdigrmine the
slump in concrete), thus minimizing the absolutffedénce
between the target (desired) outputs and the actugluts,
thereby resulting in approximate optimal solutipis

Artificial Neural Networks (ANN) have been used as
efficient tools for modeling and predicting complend
dynamic engineering systems such as structuralysisgs];
water demand forecast modeling [6]; prediction of
compressive strength of concrete [3, 7, 8]; ancisHesign of
reinforced concrete beams [9].However, the effortdhe area
of modeling concrete slump using Artificial Neufdétworks
has been lacking, but still some researchers hademafforts
in this area. Dias and Pooliyadda [10] used badpagation
neural networks to predict slump of ready mixedarete and
high strength concrete, in which chemical admixtuaad/or
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mineral additives were used. Bai et al. [11] depetb Neural new information [15]. As mentioned earlier, NeuRstworks
Network models that provide effective predictiveahility in  learn by examples. They can therefore be traineld kviown
respect of the workability of concrete incorporgtin examples of a problem to ‘acquire’ knowledge atibubnce
metakaolin (MK) and fly ash (FA). Bhatti et al. [1¢howed appropriately trained, the network can be put featfve use
possible applicability of Artificial Neural Netwosk for in solving ‘unknown’ or ‘untrained’ instances ofetiproblem.

predicting the slump of High Strength Concrete (HS@eh

[13] demonstrated the abilities of Artificial Neurdetworks .
to represent the effects of each material compor@nt The slump test results for the Ready Mixed Concrete
concrete slump. (RMC) are collected from the two Ready Mix Concrete

The aim of this paper is to present a methodolagy fbatching plants. The data collected from the flyatching

DATA SETS
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predicting slump in High Strength Concrete (HSQ)r Ehis,

the slump test data for the Ready Mixed Concretd@Ris

collected from two batching plants. These slumpgstegere
performed for various grades of concrete (i.e. MML5,

M20, M25, M30 and M35). The data contained a tofa349

slump tests results, which is used to build théfiaral Neural

Network models. Using the data (taken from the fieching
plant), Neural Network models are trained for thegput

(Cement, Fly Ash, Sand, Coarse Aggregate, WatepeiSu
Plasticizer and Water/Binder ratio) and output (8buin

concrete) parameters. Eight different Neural Nekwoodels
are created and validation of each network is dorgheck its
effectiveness and flexibility for the unseen inpariables.
The most versatile Neural Network model is selected
predict the slump in concrete. To test the accuracty
predicting slump in concrete, the final selecteddeiois

further used to test the data taken from otherhbagcplant.

The results are compared on the basis of errortibmeor

performance function (i.e. Mean Square Error and&lation

Coefficient).

1. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Neural Networks (ANN) are computational
systems whose architecture and operation are awsgiom
our knowledge about biological neural cells (negjoim the
brain. These are not simulations of real neuronthénsense
that they do not model the biology, chemistry, bygics of a
real neuron. They do however, model several aspetts
information like combining and pattern recognitibehavior
of real neurons in a simple, but still in a meafihgvay.
Artificial Neural Networks can be used to learn aadroduce
rules or operations from the given examples; tdyaeaand
generalize from sample facts and make predictioms these;
to memorize characteristics and features of givatia;dand to
match or make associations from new data to old data
variety of powerful ways [4].

Very important feature of these networks is thelagive
nature, where ‘learning by example’ replaces ‘paogming’
in solving problems. As long as enough data islakkd, a
neural network will extract any regularity fromand form a
solution. Another key feature of ANN is its essahparallel
architecture that allows for fast computation dugon when
these networks are implemented in customized haedjt4].

Compared to conventional digital computing teche&ju
Neural Networks are advantageous because of tpeiia
features such as the massively parallel procesdisgjbuted
storing of information, low sensitivity to errorhdir very
robust operation after training, generalization pdhility to
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plant contained total of 349 slump tests resulticivare used
to build the Neural Network models. The type of @atused
by the Batching plant (for carrying out the Slunegsts) was
Ordinary Portland Cement (OPC) of 53 Grade. Thests tare
performed for various grades of concrete (i.e. MML5,
M20, M25, M30 and M35). Also, the Super-Plasticiased is
ShaliPlast SP-431. Specific weights and range obttiments
of concrete of data sets (as collected from th&t fiatching
plant) are tabulated in TABLEANdTABLE Il respectively.
Similarly, the data collected from the second biaigiplant
contained a total of 40 slump tests results whiehused for
testing the accuracy of the best Neural Network ehod
developed (using data obtained from the first datriplant).
The type of cement used by the second batchingt ffan
conducting slump tests) is ordinary Portland Cen&mC) of
43 Grade. These tests are also performed for \grgiix
design proportions. The Super-Plasticizer thaakem into use
is Don-R3. Specific weights and range of constitsieaf
concrete of data sets (as collected from the setatching
plant) are tabulated in TABLEandTABLE Il respectively.

IV. ARCHITECTURE OF NEURAL NETWORK MODELS

In order to develop a system to predict the slump i
concrete, the Neural Network is trained with anuinpata
pattern. In this study, the input data pattern esponds to
following eight parameters: Cement (kgjirFly Ash (kg/nf),
Sand (kg/m), Coarse Aggregate (10 mm) (kgjm Coarse
Aggregate (20 mm) (kg/fy Water Content (kg/f),
Water/Binder ratio and Super-Plasticizer (k§)nwhich are
taken as input variables (i.e. neurons in the ifpwer). The
output layer consists of only one neuron, i.e. $luin
concrete (in cm).

Amongst various architectures and paradigms, thed+e
Forward Back-Propagation is one of the simplest amubt
applicable network being used in performing highevel
human task such as classification, decision-makarg
prediction. It is one of the most popular, effeetand easy to
learn learning algorithms for complex and multi degd
networks. Thus, a multilayered Feed-Forward Back-
Propagation Neural Network (created by generalizthg
Levenberg-Marquardt's learning rule to multiple day
networks and non-linear differential transfer fuows) is used
for predicting slump in concrete.
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TABLE |
SPECIFICWEIGHTS OFCONSTITUENTS OFCONCRETE IN
DATA SETS
(as collected from both the batching plants)

TABLE Il
RANGE OF CONSTITUENTS OFCONCRETE IN
DATA SETS
(as collected from the first batching plant)

Concrete Constituents Specific Weights
Cement 3.15
Fly Ash 2.22
Water 1.00
Super-Plasticizer 1.20
Coarse Aggregate 2.65
Fine Aggregate 2.66
TABLE I
RANGE OF CONSTITUENTS OFCONCRETE IN
DATA SETS

(as collected from the first batching plant)

Concrete Constituents Iv(lll(rg;x;%m Ivl(igl/rr?%m
Cement 100 450
Fly Ash 0 200
Sand 550 860
Coarse Aggregate (10mm) 350 1114
Coarse Aggregate (20mm) 0 764
Water Content 136 186
Super-Plasticizer 1.00 5.80
Water/Binder ratio 0.37 0.78

A typical Back-Propagation network has an inpukelayn
output layer, and at least one hidden layer. Thereno
theoretical limit on the number of hidden layers barmally
there is just one or two. The input layer is coneddo the
hidden layer and the hidden layer is connectecutput layer
by interconnection weights, as shown in Fig. 1.

The complex part of this learning mechanism is thoe
system, to determine that, which input contributesl most to
an incorrect output and how does that element lggbged to
correct the error. To solve this problem, traininguts are
provided to the input layer of the network, andiasoutputs
are compared at the output layer. The differendevden the
output of the final layer and the desired outputbick-
propagated to the previous layer (or layers), uguabdified
by the derivative of the transfer function, and tomnection
weights are normally adjusted using the Gradiergcdeast rule

International Scholarly and Scientific Research & Innovation 4(9) 2010

Concrete Constituents M(L[g;?#)m Nzig'/r:%m
Cement 120 400
Fly Ash 0 180
Sand 662 815
(Cl%?; Snf)Aggregate 365 1067
(Cz%a:‘r]srﬁ)Aggregate 0 740
Water Content 105 190
Super-Plasticizer 0.00 45
Water/Binder ratio 0.32 0.70

281

Input Layer

Hidden Layer

Output Layer
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Fig. 1 Typical Feed-Forward Back-Propagation Neural Nekwor

or its variant. This process proceeds for the previlayer,
until the input layer is reached [16]. During thaiting of the
network, the same set of data is processed mainyes &s the
weights are refined on a regular basis. The seagueafc
learning of Neural Networks is shown in Fig. 2.

Target

Neural Network
including
Connections
(called weights)
between Neurot

Adjust\
weights

Fig. 2 Sequence of learning of an Artificial NeuRastwork

Inputs Outpu
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To train a network and measure how well it perfqrias
error function (or performance function) must bdirted to

provide an unambiguous numerical rating of the epst

performance. Selection of an error function is vesgential

for representing the design goals and deciding fvhic

algorithms can be chosen. The typical error fumstidor

parameters that are used to evaluate the perfoesant

neural network models developed) those are commasiyl

for training Feed-Forward Neural Network and emphbyn

the study are:

1. The Mean Square Error (MSE) of the network errbet ts
shown in equation:

MSE=<3(t -a) &

Input Laye
—

2. Correlation Coefficient (B, which is shown in the equation

below:
R? = (%(ti_tj)x(ai_aj)) @
i(ti _tj)zx%(ai _ai)2

i=1

Where, N is the number of observations, i, j indgxthe
output and the average output nodes;at are the target
(desired) and actual network output, respectivahd f, g are
the average target (desired) and average actuabriebutput,
respectively.

Fig. 3 shows the example of proposed neural network
model for the study while TABLE IV shows the arduture
of the neural network models developed in the stidying
‘One hidden layer’ and ‘Two hidden layers’.

Hidden Layer Output Laye

Cemen

Fly As

A

Coarse Aggregal A‘\‘)& RLKTA
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OB
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Fig. 3 Proposed Neural Network model
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TABLE IV
ARCHITECTURE OF THENEURAL NETWORK MODELS DEVELOPED HAVING ONE AND TWO HIDDEN AYERS
MODELS Model 1 Model 2 Model 3 Model 4 Model 5 Mdde Model 7 Model 8
Input Layer 8 8 8 8 8 8 8 8
" .
e 2| Hdden 1 12 13 14 6 6 7 6
H.0o Layer 1
w x
x =05 ,
S D m Hidden 5 6 6 7
5E £ 2 Layer 2
I'J_J Output
= utpu
8 Layer 1 1 1 1 1 1 1 1
4
< Hidden ) ) ) ) ) ) ) )
zZ Log-sig Log-sig Log-sig Log-sig Log-sig Log-sig Laig Log-sig
Z x = Layer 1
< o
0 Hidden . . . .
z (Z) Layer 2 Tan-sig Tan-sig Tan-sig Tan-sig
z2
Output Purelin Purelin Purelin Purelin Purelin Purelin Elir Purelin
Layer
V. SAMPLING OF THE DATA VI. NEURAL NETWORKMODEL SELECTION AND PERFORMANCE
For creating the Neural Network model (yieldingioyztl EVALUATION
performance) and to minimize the true error betwaetnal Following steps are followed for selecting the NeWNetwork

and desired output, the data is randomly divided three model (yielding the optimal performance):

disjoint sets namely: Training set, Validation sahd 1)Randomly dividing the available data sets (3499 itraining
Testing set. Training set is used to train the petvand to (190), validation (89), and testing set (70).

fit the parameters of the classifier. In multi laye 2)Selecting the neural network architecture (FeedvBo Back-
perceptron, this data set is used to find the roali Propagation with Levenberg — Marquardt trainingoatm),
weights with the Back-Propagation algorithm. The number of hidden layers and hidden layer neuramahsfer
Validation set is used to fine tune the parametdrsa functions (Log-sigmoid and Purelin), training paegars
classifier. This proved to be helpful in decidinbet (Learning rate, learning cycles) and training fiowt
‘optimal’ number of hidden units or for determiniagstop (TRAINLM) to be employed for modeling slump in coate.
point for the back-propagation algorithm. The Tegtset is  3)Training the model using the Training Set only, saturation

used to test the performance of a fully trainedssiféer. limit is reached or the error function (Mean Squireor) does
Thls is usually employed to determine the erroe i@t the not show any appreciable reduction in its value.
final chosen model. 4) Evaluating the model using the validation set.

Out of the 349 slump tests results or data sets (ByRepeating the steps 2 to 4 using different netvemckitecture
obtained from the first batching plant), 190 dats$55 %) and training parameters to build different models.
are used for training, 89 data sets (25 %) are deed 6)Selecting the best model amongst all (i.e. onerfgaeptimal
validation and remaining 70 data sets (20 %) arsl der performance), on the basis of its error (or perfomoe)
testing the Neural Network. The easy way of reprisg function (i.e. Mean Square Error).

the sampling of data is shown in Fig. 4. 7)Assessing the performance of the final model u#irgtesting
set.

The results are tabulated in TABLE V.

Available Data Set

(349) VII. TESTING THESELECTEDNEURAL NETWORK MODEL WITH
UNSEENDATA

From the results obtained by training the Neurakwdek

1 (TABLE V), it is evident that Neural Network mod@lis giving

- . X least Mean Square Error (MSE) and the maximum Cuioa

Training Validation Testing Coefficient (R) with the target outputs. Thus, Model 8 is
Data Set Data Set Data Set selected as the final Model whose parameters actitecture
(190) (89) (70) will be employed to assess the performance ofdbing set.

Model 8 had Neural Network architecture of two teddayers
Fig. 4 Sampling of the Data with 6 neurons in first layer and 7 in the secamyel. The model

(earlier trained with training and validation daets), is tested
with the testing data set so as to compute thé &nmar in the
optimized model.
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The training parameters included ‘Log-sigmoid’ &g t Correlation Coefficient (B 0.99848 and the error (MSE)
transfer function in each layer and TRAINLM as theé).00124 indicates, that the selected Neural Netwodklel has
training function. The results obtained are shown ibeen fully trained to recognize any pattern witthie available
TABLE VI (Also refer Fig. 5 and Fig. 6).The valud o dataset.

TABLE V
TRAINING AND VALIDATION RESULTS OF ALL NEURAL NETWORK MODELS DEVELOPED

Training Set Validation Set
Model M S El Correlation Coeffici M S El
ean Square Error orrelation Coefficient ean Square Error
No. of Data (MSE) No. of data R (MSE)
Model 1 190 0.000720 89 0.98760 0.08861
Model 2 190 0.000403 89 0.99309 0.00494
Model 3 190 0.000186 89 0.99626 0.00274
Model 4 190 0.000110 89 0.99846 0.00146
Model 5 190 0.000277 89 0.99523 0.00339
Model 6 190 0.000249 89 0.99570 0.00306
Model 7 190 0.000100 89 0.99828 0.00124
Model 8 190 0.000100 89 0.99828 0.00122
TABLE VI Training of Selected Neural Network Model
TRAINING AND TESTING OF SELECTEINEURAL NETWORK MODEL rainng ot Selecied Neural Ne oce
00080
Training of Neural Network Testing of Neural Netwdr 0.0072+ \
_ 0.00641 .,
2 0.00561 \
i © 0.00484
Epochs Mean Square Error ggggilgi?]rt] Mean Square 3 0.0040 *
P (MSE) R Error (MSE) 9 0.00321
(R) §0.0024—
0.0016- .,
50 0.007649 0.85237 0.10732 0.0008+ . o
0.0000 ‘ ‘ ‘ : ‘ ‘ : ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000
100 0.006272 0.92233 0.05645 No. of Epochs
200 0.004412 0.96887 0.04272 Fig. 5 Training of selected Neural Network Model
300 0.001477 0.98383 0.02674 Testing of Selected Neural Network Model
400 0.000459 0.99297 0.00886
500 0.000413 0.99792 0.00148 2
&
600 0.000353 0.99810 0.00135 g
800 0.000346 0.99848 0.00124 0 100 200 300 400 500 600 700 800 900 1000
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No. of Epochs

Fig. 6 Testing of selected Neural Network Model
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VIII. TESTING THE SELECTEOINEURAL NETWORK MODEL
WITH THE DATA OBTAINED FROM THE SECOND READY MIX
CONCRETE(RMC) BATCHING PLANT

Since Neural Network model 8 is found out to be tmos
optimal amongst all the models, therefore, it stead with
the data set which is obtained from second batcplagt.
This testing is done so as to compute the errorcangpare
its performance with the model (that is earlietadswith
the testing data set using data obtained from ftrst f
batching plant. (Refer TABLE VI). The training paraters
includes ‘Log-sigmoid’ as the transfer function @&ach
layer and TRAINLM as the training function. In TABL
VII, the Correlation Coefficient 0.91845 and the Mean
Square Error (MSE) 0.05795 (Refer Fig. 7 and Fig. 8
indicates, that the chosen Neural Network model tresen
fully trained to recognized any pattern within tneailable
dataset obtained from the first batching plant,fhii$ to do
so for the dataset which is obtained from the secon
batching plant. The reason for this is the use ifier@nt
types of Cement and Super-Plasticizers by bothRibedy
Mix Concrete batching plants. Adoption of differgahges
of constituents of concrete by both the batchirand also
affects the results.

TABLE VII
TRAINING AND TESTING OF SELECTEDINEURAL NETWORK MODEL WITH
THE DATA OBTAINED FROM THE SECOND BATCHING PLANT

Fig.

Training of Neural Network Testing of Neural Netwdr

Training of Selected Neural Network Model
0.012-
0.0114 o
5 0.0104 e,
£ 0.008 \
© 0.007+
© L .
= 0.006 — o .
2 0.005 T
£ 0.004]
0.0024
0.0014
0.000 T T T T |
0 200 400 600 800 100
No. of Epochs

Fig. 7 Training of selected Neural Network Modetiwihe Data
obtained from the second batching plant

Testing of Selected Neural Network Model

Mean Square Error
o
o
N
=}
il

0 200 400 600 800 100
No. of Epochs

8 Testing of selected Neural Network Modelhithie Data obtained
from the second batching plant

IX. CONCLUSION

Correlation
Epochs '\E"r?gr”(fﬂqsuge Coefficient ~'ea" (S,\?gér)e The findings of the study presented here are basedhe
(R) evaluations of the Neural Network models developed a
limited data set. The conclusions made out of theysare as
50 0.010134 0.82532 0.12414 follows:
1)As the final selected and tuned Artificial NeuraktiWork
100 0.009485 0.83651 0.11619 model is tested with the unseen data obtained froenfirst
batching plant, the Mean Square Error (MSE) and the
200 0.006645 0.88546 0.08140 Correlation Coefficient (B is found out to be 0.00124 and
0.99848, respectively. This proves clearly that theural
300 0.006286 0.89165 0.07700 Network models developed are reliable and usefolis t
proving that splitting the data into three sete. (itraining
400 0.005684 0.90202 0.06963 dataset, validation dataset and testing datasetyuige
effective for developing and selecting optimal HActal
500 0.005503 0.90514 0.06742 Neural Ne;work model and it_s final error estimation
2)When the final selected and fine tuned Neural Netwoodel
is tested with the data obtained from the secondhbay
600 0.005369 0-90745 0.06577 plant, the Mean Square Error (MSE) and the Coimeiat
Coefficient (R) comes out to be 0.05795 and 0.91845,
800 0.004730 0.91845 0.05795

respectively, indicates clearly that the applidgabibf the
selected and fine tuned model for predicting slump
concrete is limited. The model can give optimalfgenance
or can predict any mix proportions (giving suitabledesired
slump) as long as their type of Cement, Admixtu(is
particular, Super-Plasticizer) and Range of Camstits of
Concrete is same.

3) Artificial Neural Networks can be used by enginedcs

International Scholarly and Scientific Research & Innovation 4(9) 2010

estimate the slump in concrete whose constituerdslyn
includes cement, fly ash, sand, coarse aggregatdsy and
super-plasticizer. It becomes convenient and easigé these
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models to predict any mix proportions (giving shita

or desired slump). [14] G. Bandyopadhyay, and S. Chattopadhyay, “SingleléfidLayer Atrtificial

Neural Network Models Versus Multiple Linear Regies Model in
forecasting the Time Series of Total Ozonef’ J. Environ. Sci. Techvol.
X. FURTHER SCOPE OFSTUDY 4,no. 1, pp. 141-149, 2007.
. 15] R. J. Schalkoff, “Artificial Neural Networks,” Mc @w Hill, Singapore,
The present study has been done to predict slump i 1995, gap

concrete (of various mix design proportions) coesit) [16] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, .SIntbduction to
Cement, Fly Ash, Water, Sand, Coarse Aggregates and Neural Networks using MATLAB 6.0,” Tata McGraw-HilNew Delhi,
Super-Plasticizer as the constituents of concrétether 2006.
research in predicting workability or slump in coste

using Artificial Neural Networks may be:

1)Predicting Slump in concrete using Neural Networks
considering many more constituents of Concretee (lik
Silica, Blast Furnace slag, etc.).

2)Comparing the results or effectiveness of usingfidirl
Neural Networks for modeling slump in concrete with
the linear and non-linear regression models (deerlo
using the same data), for concluding which onehés t
best.

3) Performance sensitivity analysis (in addition todeling
of Slump in Concrete using Artificial Neural Netw®r
so as to evaluate the impact of various concrete mi
constituents on the concrete slump, based on tee be
Neural Network model developed. In other words, the
Neural Networks can be used to explore the caude an
affect relationship between networks’ input andpoitit
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