Search results for: Data Parallel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7883

Search results for: Data Parallel

6413 Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara

Authors: S. Chikhi, M. Batouche, H. Shout

Abstract:

In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.

Keywords: Classification, Lithofacies, Probabilistic formalism, Reservoir characterization, Well-log data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
6412 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
6411 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: Cyclic loading, DEM, numerical modelling, sands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
6410 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
6409 New Methods for E-Commerce Databases Designing in Semantic Web Systems (Modern Systems)

Authors: Karim Heidari, Serajodin Katebi, Ali Reza Mahdavi Far

Abstract:

The purpose of this paper is to study Database Models to use them efficiently in E-commerce websites. In this paper we are going to find a method which can save and retrieve information in Ecommerce websites. Thus, semantic web applications can work with, and we are also going to study different technologies of E-commerce databases and we know that one of the most important deficits in semantic web is the shortage of semantic data, since most of the information is still stored in relational databases, we present an approach to map legacy data stored in relational databases into the Semantic Web using virtually any modern RDF query language, as long as it is closed within RDF. To achieve this goal we study XML structures for relational data bases of old websites and eventually we will come up one level over XML and look for a map from relational model (RDM) to RDF. Noting that a large number of semantic webs get advantage of relational model, opening the ways which can be converted to XML and RDF in modern systems (semantic web) is important.

Keywords: E-Commerce, Semantic Web, Database, XML, RDF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
6408 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model

Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li

Abstract:

The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.

Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5787
6407 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
6406 Dynamic Decompression for Text Files

Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A

Abstract:

Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.

Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
6405 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
6404 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
6403 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: Embedded computing, internet of things, mobile computing, and wireless technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
6402 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: Blue-Green landscape network, city crossing river, four-dimensional analysis method, planning order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
6401 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is a critical measure of a supply chain's performance. It impacts both the customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages respectively: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines was extracted from the company's records to use for this study. The sample data entails information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each stage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered later than the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impacts on lead time. Data analysis on the stages of lead time indicates that stage 2 consumed over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each stage. Recommendation was given to resolve the problem.

Keywords: Lead time reduction, customer satisfaction, service quality, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6690
6400 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
6399 Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants

Authors: Ion Miciu

Abstract:

The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).

Keywords: Automation System, Cogenerative Power Plant, Control, Monitoring, Real Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
6398 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
6397 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model

Authors: Jaemoon Lim

Abstract:

To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.

Keywords: Chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
6396 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
6395 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Authors: M.K.Jeya Kumar

Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
6394 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: BER, LTE, MIMO, path loss, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
6393 A Forecast Model for Projecting the Amount of Hazardous Waste

Authors: J. Vilgerts, L. Timma, D. Blumberga

Abstract:

The objective of the paper is to develop the forecast model for the HW flows. The methodology of the research included 6 modules: historical data, assumptions, choose of indicators, data processing, and data analysis with STATGRAPHICS, and forecast models. The proposed methodology was validated for the case study for Latvia. Hypothesis on the changes in HW for time period of 2010-2020 have been developed and mathematically described with confidence level of 95.0% and 50.0%. Sensitivity analysis for the analyzed scenarios was done. The results show that the growth of GDP affects the total amount of HW in the country. The total amount of the HW is projected to be within the corridor of – 27.7% in the optimistic scenario up to +87.8% in the pessimistic scenario with confidence level of 50.0% for period of 2010-2020. The optimistic scenario has shown to be the least flexible to the changes in the GDP growth.

Keywords: Forecast models, hazardous waste management, sustainable development, waste management indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
6392 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: Single-axis and dual-axis photovoltaic systems, capacity factor, final yield, renewable energy, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
6391 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
6390 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3837
6389 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings

Authors: Sorin Valcan, Mihail Găianu

Abstract:

Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need of labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to a ground truth data generation algorithm for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual labels adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.

Keywords: Labeling automation, infrared camera, driver monitoring, eye detection, Convolutional Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
6388 A New Authenticable Steganographic Method via the Use of Numeric Data on Public Websites

Authors: Che-Wei Lee, Bay-Erl Lai

Abstract:

A new steganographic method via the use of numeric data on public websites with a self-authentication capability is proposed. The proposed technique transforms a secret message into partial shares by Shamir’s (k, n)-threshold secret sharing scheme with n = k + 1. The generated k+1 partial shares then are embedded into the numeric items to be disguised as part of the website’s numeric content, yielding the stego numeric content. Afterward, a receiver links to the website and extracts every k shares among the k+1 ones from the stego numeric content to compute k+1 copies of the secret, and the phenomenon of value consistency of the computed k+1 copies is taken as an evidence to determine whether the extracted message is authentic or not, attaining the goal of self-authentication of the extracted secret message. Experimental results and discussions are provided to show the feasibility and effectiveness of the proposed method.

Keywords: Steganography, data hiding, secret authentication, secret sharing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
6387 Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses

Authors: Yoshifumi Ishizaki, Naoki Kanatani, Masaki Ito, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara

Abstract:

This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.

Keywords: Route Bus, Path Planning System, GPS, Smart Phone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
6386 Kinematic Analysis of an Assistive Robotic Leg for Hemiplegic and Hemiparetic Patients

Authors: M.R. Safizadeh, M. Hussein, K. F. Samat, M.S. Che Kob, M.S. Yaacob, M.Z. Md Zain

Abstract:

The aim of this paper is to present the kinematic analysis and mechanism design of an assistive robotic leg for hemiplegic and hemiparetic patients. In this work, the priority is to design and develop the lightweight, effective and single driver mechanism on the basis of experimental hip and knee angles- data for walking speed of 1 km/h. A mechanism of cam-follower with three links is suggested for this purpose. The kinematic analysis is carried out and analysed using commercialized MATLAB software based on the prototype-s links sizes and kinematic relationships. In order to verify the kinematic analysis of the prototype, kinematic analysis data are compared with the experimental data. A good agreement between them proves that the anthropomorphic design of the lower extremity exoskeleton follows the human walking gait.

Keywords: Kinematic analysis, assistive robotic leg, lower extremity exoskeleton, cam-follower mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
6385 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate

Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand

Abstract:

Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.

Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4810
6384 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation

Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed

Abstract:

The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.

Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109