

Abstract—In this paper, we use historical data to predict the stock

price of a tech company. To this end, we use a dataset consisting of the
stock prices over the past five years of 10 major tech companies:
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix,
Oracle, Salesforce, and Tesla. We implemented and tested three
models – a linear regressor model, a k-nearest neighbor model (KNN),
and a sequential neural network – and two algorithms – Multiplicative
Weight Update and AdaBoost. We found that the sequential neural
network performed the best, with a testing error of 0.18%.
Interestingly, the linear model performed the second best with a testing
error of 0.73%. These results show that using historical data is enough
to obtain high accuracies, and a simple algorithm like linear regression
has a performance similar to more sophisticated models while taking
less time and resources to implement.

Keywords—Finance, machine learning, opening price, stock
market.

I. BACKGROUND

ACHINE learning is playing an increasing role in the
stock market. According to [1], in 2023 about 72% of the

trading volume in the stock market has been driven by
algorithms. Furthermore, a recent census from Gallup shows
that 61% of the American population (about 202 million
people) invest and own stocks [2], showing the population’s
keen interest in the stock market.

This work aims to train a model that takes into account the
opening, closing, high, and low stock prices of a company from
the last three days to predict the opening price on the next day
and beyond.

II. DATASET

We use Yahoo! Finance [3] to collect the historical data of
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix,
Oracle, Salesforce, and Tesla over the past 5 years. In total,
there are 1,256 samples, each corresponding to a day and
containing the opening, closing, high, and low stock prices as
well as the volume, stock dividends, and stock splits.

The opening price is the first price the company’s stock
trades when the market opens; the closing price is the last price
the stock trades when the market closes; the high and low prices
are the highest and the lowest price the stock reaches that day,
respectively; the volume is the total number of shares traded on
that day; dividends are dividend payments to shareholders in
the form of additional shares in the company rather than cash;
and the stock splits are issues of new shares to existing

Sofia Stoica is a high school student at Proof School, San Francisco, CA

94103 (e-mail: sofiastoica@proofschool.org).

shareholders in proportion to their holdings [4]-[7]. The
opening price is important because it is the price that the model
will predict. The closing, high and low prices capture the trend
of the company’s stock price on a given day.

During the preprocessing phase, we removed the volume
because preliminary experimental results showed better
performance without this feature. We also removed the
dividends and the stock splits because they have little impact on
the opening price, if any. Fig. 1 shows the generally positive
trend of Microsoft’s opening price over the last five years, a
trend which is shared by the other nine companies.

For each company, we created two arrays: X and y. Each row
in X represents the opening, closing, high, and low prices for
every day in the last three days. Each row in y represents the
opening price on the fourth day. In addition, we created
combined X and y arrays by stacking the individual X and y
arrays of each company on top of each other. We tested
different combinations of years and days (e.g., 5 years 7 days,
10 years 5 days, etc.), and found that using 5 years and 3 days
generated the best results. To create the test set, we randomly
chose 20% of the entire dataset by using train_test_split, a
random splitting algorithm that splits a dataset into training and
testing examples [8]. To evaluate our models, we use the
average percent error, i.e.,

| |

∗ 100 (1)

III. METHODOLOGY/MODELS

We implemented most of our models using Scikit-learn
(sklearn), a free software machine learning python library [9].
The only exception was the sequential neural network for which
we used the Keras library, an open-source software library that
provides a Python interface for neural networks [10].

In our evaluation, we used two simple models as baselines: a
linear model using Linear Regression and a KNN. The purpose
of Linear Regression is to predict the “line of best fit” for a
distribution [11]. A KNN regressor uses the k-nearest points to
approximate the value of a given data point [12].

 The next model we tested was a sequential neural network.
A neural network is a computation structure that tries to mimic
the way the human brain works to learn the underlying patterns
in a dataset. A neural network consists of three parts: the input
layer, the hidden layers, and the output. Each layer consists of
artificial neurons that read data and output results. The relation
between two neurons from one layer to another is a coefficient

Using Historical Data for Stock Prediction of a Tech
Company

Sofia Stoica

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

16International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

2.
pd

f

called weight, which controls the signal (or strength of the
connection) between the two neurons. Learning involves the
continuous adjustments of weights until the optimal weights –
those that result in the network producing the most accurate
predictions - are found [13]. A sequential neural network is a
specific type of network that inputs or outputs sequences (e.g.,
time-series data) [14]. Unlike the other models, which we
trained on the data from all the companies, the neural network
was trained only on the historical data from Microsoft. The

network that obtained the best results had an input layer of 13
neurons, one dense hidden layer of 10 neurons which used a L1
kernel regularizer and a ReLU activation function (to ensure the
outputs for all neurons are positive), and an output layer of 1
neuron. We used the kernel regularizer to improve convergence
and prevent overfitting (which occurs when the model is unable
to generalize due to “memorizing” too faithfully the training
data) [15], [16]. The network consisted of 151 trainable
parameters (e.g., weights, biases).

Fig. 1 Plot of the opening prices for Microsoft in the last 5 years

To check whether combining the linear model and KNN
regressor would result in better performance, we used
ensembled learning in the form of Multiplicative Weight
Update and an AdaBoost Regressor. Ensembled learning is the
process by which multiple models, such as classifiers, are
strategically generated and combined to solve a particular
computational intelligence task [17]. Multiplicative Weight
Update is a game theory algorithm used to aggregate different
predictions in a dynamic manner [18]. AdaBoost is a process of
generating new predictors, which are trained on parts of the
dataset the previous predictions did not perform well on [19].
Since AdaBoost can only take in one base estimator and we
needed two, we used a Voting Regressor to create the necessary
ensembled model. A Voting Regressor is an ensemble meta-
estimator that fits several base regressors to create an
ensembled model [20].

IV. RESULTS AND DISCUSSION

As seen in Table I, which displays the training errors, the
AdaBoost Regressor performs the worst with the highest
training error being 2.03% (0.53% worse than the highest linear
model error, 0.33% worse than the highest KNN error, 1.58%
worse than sequential neural network error, and 0.66% worse
than Multiplicative Weight Update). Multiplicative Weight
Update and the KNN are tied for the second worse. We suspect
the reason why AdaBoost and Multiplicative Weight Update do
not perform well is because they depend on the KNN, which
provides some of the worst performance for predictions. This is
because unlike, for example, the linear model, it is unable to

filter out the features that are unhelpful by assigning them very
small weights, resulting in high inaccuracies. Additionally,
unlike neural networks which learn on all of the training
samples, the KNN is only able to learn from the k nearest points.

In general, the linear model has a training error below 1%,
meaning that it generates close to accurate predictions. The
sequential neural network, however, performs the best with
average percent errors ranging from 0.17% (0.48% better than
the lowest linear model error, 0.54% better than the lowest
KNN regressor error, 0.51% better than Multiplicative Weight
Update, and 0.53% better than AdaBoost) to 0.45% (1.05%
better than the highest linear model error, 1.25% better than the
highest KNN error, 0.92% better than Multiplicative Weight
Update, and 1.58% better than AdaBoost).

As seen in Table II, which displays the testing errors, the
KNN performs the worst with the highest average testing error
of 3.08% (1.35% worse than the highest linear model error,
2.57% worse than the highest sequential neural network error,
1.16% worse than Multiplicative Weight Update, 0.44% worse
than AdaBoost). A reason for this might be overfitting; hence,
why we see better performance on the training set (highest
training error is 1.70%) than on the test set. AdaBoost performs
the second worst, while Multiplicative Weight Update the third
worst.

Once again, the linear model provides decent predictions,
generally achieving less than a 1% error. The sequential neural
network performs the best with errors ranging from 0.18%
(0.55% better than the lowest linear model error, 0.93% better
than the lowest KNN regressor error, 0.63% better than

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

17International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

2.
pd

f

Multiplicative Weight Update, and 0.78% better than
AdaBoost) to 0.51% (1.22% better than the linear model, 2.57%
better than the KNN regressor, 1.41% better than Multiplicative
Weight Update, 2.13% better than AdaBoost).

TABLE I

TRAINING ERROR OBTAINED FOR EACH COMPANY

Symbol Company Average Percent Error Obtained from
Each Model

MSFT Microsoft Linear Model: 0.68%
KNN: 0.79%

Sequential Neural Network: 0.17%
Multiplicative Weight Update: 0.78%

AdaBoost Regressor: 0.83%
APPL Apple Linear Model: 0.75%

KNN: 0.85%
Sequential Neural Network: 0.32%

Multiplicative Weight Update: 1.01%
AdaBoost Regressor: 1.04%

GOOG Google Linear Model: 0.68%
KNN: 0.83%

Sequential Neural Network: 0.35%
Multiplicative Weight Update: 0.81%

AdaBoost Regressor: 0.95%
ORACL Oracle Linear Model: 0.65%

KNN: 0.71%
Sequential Neural Network: 0.30%

Multiplicative Weight Update: 0.68%
AdaBoost Regressor: 0.70%

META Facebook Linear Model: 1.50%
KNN: 1.16%

Sequential Neural Network: 0.45%
Multiplicative Weight Update: 1.33%

AdaBoost Regressor: 1.89%
ADBE Adobe Linear Model: 0.78%

KNN: 0.82%
Sequential Neural Network: 0.27%

Multiplicative Weight Update: 0.93%
AdaBoost Regressor: 0.95%

AMZN Amazon Linear Model: 0.75%
KNN: 0.89%

Sequential Neural Network: 0.31%
Multiplicative Weight Update: 0.89%

AdaBoost Regressor: 1.09%
NFLX Netflix Linear Model: 0.83%

KNN: 1.07%
Sequential Neural Network: 0.43%

Multiplicative Weight Update: 0.98%
AdaBoost Regressor: 1.02%

TSLA Tesla Linear Model: 1.50%
KNN: 1.70%

Sequential Neural Network: 0.33%
Multiplicative Weight Update: 1.10%

AdaBoost Regressor: 2.03%
CRM Sales Force Linear Model: 0.91%

KNN: 0.99%
Sequential Neural Network: 0.37%

Multiplicative Weight Update: 0.99%
AdaBoost Regressor: 0.94%

NONE Combined Companies Linear Model: 0.93%
KNN: 0.84%

Sequential Neural Network: 0.20%
Multiplicative Weight Update: 1.37%

AdaBoost Regressor: 1.43%

Furthermore, the sequential neural network seems to
generalize the best as the majority of the companies have a
testing error that is less than or equal to the training error:
Google (both have a training and testing error of 0.35%), Oracle
(training: 0.30% vs. testing: 0.27%), Facebook (training: 0.45%

vs 0.43%), Adobe (both are 0.27%), Amazon (both are 0.31%),
Tesla (training: 0.33% vs. testing: 0.32%), Sales Force (both are
0.37%), and Combined Companies (training: 0.20% vs. testing:
0.19%). Additionally, the range of the testing errors (0.18% to
0.51%) is very close to the range for the training errors (0.17%
to 0.45%). As such, the sequential neural network is the best
model from the ones we evaluated.

TABLE II

TESTING ERROR OBTAINED FOR EACH COMPANY

Symbol Company Average Percent Error Obtained from
Each Model

MSFT Microsoft Linear Model: 0.82%
KNN: 1.33%

Sequential Neural Network: 0.18%
Multiplicative Weight Update: 0.88%

AdaBoost Regressor: 1.10%
APPL Apple Linear Model: 0.89%

KNN: 1.57%
Sequential Neural Network: 0.33%

Multiplicative Weight Update: 1.04%
AdaBoost Regressor: 1.54%

GOOG Google Linear Model: 0.73%
KNN: 1.11%

Sequential Neural Network: 0.35%
Multiplicative Weight Update: 0.81%

AdaBoost Regressor: 1.22%
ORACL Oracle Linear Model: 0.73%

KNN: 1.18%
Sequential Neural Network: 0.27%

Multiplicative Weight Update: 0.82%
AdaBoost Regressor: 0.96%

META Facebook Linear Model: 1.17%
KNN: 1.52%

Sequential Neural Network: 0.43%
Multiplicative Weight Update: 1.12%

AdaBoost Regressor: 1.76%
ADBE Adobe Linear Model: 0.85%

KNN: 1.39%
Sequential Neural Network: 0.27%

Multiplicative Weight Update: 0.91%
AdaBoost Regressor: 1.27%

AMZN Amazon Linear Model: 0.86%
KNN: 1.40%

Sequential Neural Network: 0.31%
Multiplicative Weight Update: 0.91%

AdaBoost Regressor: 1.03%
NFLX Netflix Linear Model: 1.46%

KNN: 2.62%
Sequential Neural Network: 0.51%

Multiplicative Weight Update: 1.60%
AdaBoost Regressor: 2.26%

TSLA Tesla Linear Model: 1.73%
KNN: 3.08%

Sequential Neural Network: 0.32%
Multiplicative Weight Update: 1.92%

AdaBoost Regressor: 2.64%
CRM Sales Force Linear Model: 0.98%

KNN: 1.62%
Sequential Neural Network: 0.37%

Multiplicative Weight Update: 1.03%
AdaBoost Regressor: 1.21%

NONE Combined Companies Linear Model: 0.90%
KNN: 1.34%

Sequential Neural Network: 0.19%
Multiplicative Weight Update: 0.90%

AdaBoost Regressor: 1.53%

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

18International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

2.
pd

f

Fig. 2 Predicted opening vs. actual opening price for Amazon using
Linear Regression in $

Fig. 3 Predicted opening vs. actual opening price for Amazon using
KNN Regressor in $

Fig. 4 Predicted opening vs. actual opening price for Amazon using
Sequential Neural Network in $; prices are normalized

Fig. 5 Predicted opening vs. actual opening price for Amazon using
Multiplicative Weight Update in $

Fig. 6 Predicted opening vs. actual opening price for Amazon using
AdaBoost in $

To visualize the model performance, we plot the predicted

price versus the actual opening price. Ideally, these two prices
should be the same, which is shown by the red line (x = y) with
the slope of one. We visualize the performances of our various
models for Amazon’s dataset. We call the predictions that are
noticeably away from the ideal line “outliers”.

As shown in Fig. 2, in general, predictions lie along the x =
y line. There is only one outlier; therefore, the linear model
performs well for Amazon.

As shown in Fig. 3, the KNN model generates worse
predictions since more data are further away from the x = y line.
In this case, we have about four outliers.

The predictions from the sequential neural network (Fig. 4)
lie almost perfectly on the x = y line, which shows that this
model provides almost perfect predictions.

The predictions provided by Multiplicative Weight Update
(Fig. 5) are similar to those of the linear model, so this performs
quite well for Amazon.

Finally, as shown in Fig. 6, while the predictions provided by
AdaBoost do not look as bad as those provided by the KNN,
they contain about the same number of outliers.

V. CONCLUSION

To summarize, we trained a linear regressor model, a KNN,
a sequential neural network and used Multiplicative Weight
Update and AdaBoost on the stocks over the past 5 years of
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix,
Oracle, Salesforce, and Tesla. Through extensive analysis and
studies, we observed that the deep neural network achieved the
lowest test errors, the linear model achieved the second-best
results, and the tree-based AdaBoost and KNN models
performed the worst.

As future work, one possible approach to further improve the
predictions is to use online learning. Online learning involves
using real-time data, meaning the model is constantly being fed
in data and updating its parameters. It is useful when the data
may be changing rapidly over time, like in the stock market
[21]. Another approach is using Natural Language Processing
(NLP) and Sentiment Analysis on tweets [22] and news articles.
This will allow the model to have access to the current state of
the market and economy to make more informed predictions.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

19International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

2.
pd

f

NLP is a subfield of Artificial Intelligence (AI) that aims to
teach computers how to understand, analyze, and contextualize
language [23]. Sentiment Analysis is the task of classifying
whether a text has negative sentiment (-1), neutral sentiment
(0), or positive sentiment (1) [24].

ACKNOWLEDGMENT

This paper would not have been possible without the
mentorship and support of Odysseas Drosis during the research
process.

REFERENCES
[1] “Algorithmic Trading Market – Growth, Trends, Covid-19 Impact, and

Forecasts (2023 – 2028)”. https://www.mordorintelligence.com/industry-
reports/algorithmic-trading-
market#:~:text=According%20to%20Wall%20Street%20data,largest%2
0and%20most%20liquid%20globally.

[2] Lydia Saad and Jeffrey M. Jones. “What Percentage of Americans Owns
Stock?”. https://news.gallup.com/poll/266807/percentage-americans-
owns-stock.aspx.

[3] Yahoo! Finance. https://finance.yahoo.com/.
[4] Jeremy Salvucci. “What are Opening & Closing Prices in The Stock

Market”. https://www.thestreet.com/dictionary/o/opening-and-closing-
prices.

[5] Cory Mitchell, reviewed by Samantha Silberstein, and fact checked by
Skylar Clarine. “How to Use Stock Volume to Improve Your Trading”.
https://www.investopedia.com/articles/technical/02/010702.asp#:~:text=
Volume%20measures%20the%20number%20of,gathering%20strength
%20to%20the%20downside.

[6] James Chen, reviewed by Gordon Scott, and fact checked by Pete
Rathburn. “Stock Dividend: What it is And How it Works, With
Example”. https://www.investopedia.com/terms/s/stockdividend.asp.

[7] Adam Hayes, review by Gordon Scott, and fact checked by Suzanne
KvilHaug. “What a Stock Split is And How it Works, With an Example”.
https://www.investopedia.com/terms/s/stocksplit.asp.

[8] Michael Galarnyk. “Understanding Train Test Split”.
https://builtin.com/data-science/train-test-split.

[9] Scikit-learn home page. https://scikit-learn.org/stable/.
[10] Keras about page. https://keras.io/about/.
[11] Recast. “What is Linear Regression?”. https://getrecast.com/linear-

regression/.
[12] Khalid Alkhatib, Hassan Najadat, Ismail Hmeidi, Mohammed K. Ali

Shatnawi. “Stock Price Prediction Using K-Nearest Neighbor (kNN)
Algorithm” in the International Journal of Business, Humanities and
Technology vol.3, no.3, March 2013, pp. 33 & 34.
https://www.ijbhtnet.com/journals/Vol_3_No_3_March_2013/4.pdf.

[13] Adil Moghar, Mhamed Hamiche. “Stock Market Prediction Using LSTM
Recurrent Neural Network” in the Procedia Computer Science vol 170,
2020, pp. 1169.
https://www.sciencedirect.com/science/article/pii/S1877050920304865#

[14] Santhoopa Jayawardhana. “Sequence Models & Recurrent Neural
Networks (RNNs)”. https://towardsdatascience.com/sequence-models-
and-recurrent-neural-networks-rnns-62cadeb4f1e1.

[15] Darshan M. “How do Kernel Regularizes Work With Neural Networks”.
https://analyticsindiamag.com/kernel-regularizers-with-neural-
networks/.

[16] AWS. “What is Overfitting?”. https://aws.amazon.com/what-
is/overfitting/.

[17] Dr. Robi Polikar. “Ensemble Learning”.
http://www.scholarpedia.org/article/Ensemble_learning#:~:text=Ensemb
le%20learning%20is%20the%20process,%2C%20function%20approxi
mation%2C%20etc.).

[18] Sanjeev Arora, Elad Hazan, Satyen Kale. “The Multiplicative Weights
Update Method: A Meta Algorithm and Applications”, pp. 3.
https://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf.

[19] Akash Desarda. “Understanding AdaBoost”.
https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe.

[20] Sklearn documentation of Voting Regressor. https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.h
tml.

[21] Jason Brownlee. “14 Different Types of Learning in Machine Learning”.
https://machinelearningmastery.com/types-of-learning-in-machine-
learning/.

[22] Sanjam Singh, Amandeep Kaur. “Twitter Sentiment Analysis For Stock
Prediction”, published by the Proceedings of the Advancement in
Electronics & Communication Engineering (AECE), July, 2022, pp. 674.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4157658.

[23] Diksha Khurana, Aditya Koli, Kiran Khatter, Sukhdev Singh. “Natural
Language Processing: State of The Art, Current Trends and Challenges”,
pp. 1
https://www.researchgate.net/publication/319164243_Natural_Language
_Processing_State_of_The_Art_Current_Trends_and_Challenges.

[24] Shashank Gupta. “Sentiment Analysis: Concept, Analysis And
Applications”. https://towardsdatascience.com/sentiment-analysis-
concept-analysis-and-applications-6c94d6f58c17.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

20International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

2.
pd

f

