
 

 

 
Abstract—In this paper, we use historical data to predict the stock 

price of a tech company. To this end, we use a dataset consisting of the 
stock prices over the past five years of 10 major tech companies: 
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, 
Oracle, Salesforce, and Tesla. We implemented and tested three 
models – a linear regressor model, a k-nearest neighbor model (KNN), 
and a sequential neural network – and two algorithms – Multiplicative 
Weight Update and AdaBoost. We found that the sequential neural 
network performed the best, with a testing error of 0.18%. 
Interestingly, the linear model performed the second best with a testing 
error of 0.73%. These results show that using historical data is enough 
to obtain high accuracies, and a simple algorithm like linear regression 
has a performance similar to more sophisticated models while taking 
less time and resources to implement.  
 

Keywords—Finance, machine learning, opening price, stock 
market.  

I. BACKGROUND 

ACHINE learning is playing an increasing role in the 
stock market. According to [1], in 2023 about 72% of the 

trading volume in the stock market has been driven by 
algorithms. Furthermore, a recent census from Gallup shows 
that 61% of the American population (about 202 million 
people) invest and own stocks [2], showing the population’s 
keen interest in the stock market.  

This work aims to train a model that takes into account the 
opening, closing, high, and low stock prices of a company from 
the last three days to predict the opening price on the next day 
and beyond.  

II. DATASET 

We use Yahoo! Finance [3] to collect the historical data of 
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, 
Oracle, Salesforce, and Tesla over the past 5 years. In total, 
there are 1,256 samples, each corresponding to a day and 
containing the opening, closing, high, and low stock prices as 
well as the volume, stock dividends, and stock splits. 

The opening price is the first price the company’s stock 
trades when the market opens; the closing price is the last price 
the stock trades when the market closes; the high and low prices 
are the highest and the lowest price the stock reaches that day, 
respectively; the volume is the total number of shares traded on 
that day; dividends are dividend payments to shareholders in 
the form of additional shares in the company rather than cash; 
and the stock splits are issues of new shares to existing 
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shareholders in proportion to their holdings [4]-[7]. The 
opening price is important because it is the price that the model 
will predict. The closing, high and low prices capture the trend 
of the company’s stock price on a given day.  

During the preprocessing phase, we removed the volume 
because preliminary experimental results showed better 
performance without this feature. We also removed the 
dividends and the stock splits because they have little impact on 
the opening price, if any. Fig. 1 shows the generally positive 
trend of Microsoft’s opening price over the last five years, a 
trend which is shared by the other nine companies. 

For each company, we created two arrays: X and y. Each row 
in X represents the opening, closing, high, and low prices for 
every day in the last three days. Each row in y represents the 
opening price on the fourth day. In addition, we created 
combined X and y arrays by stacking the individual X and y 
arrays of each company on top of each other. We tested 
different combinations of years and days (e.g., 5 years 7 days, 
10 years 5 days, etc.), and found that using 5 years and 3 days 
generated the best results. To create the test set, we randomly 
chose 20% of the entire dataset by using train_test_split, a 
random splitting algorithm that splits a dataset into training and 
testing examples [8]. To evaluate our models, we use the 
average percent error, i.e.,  

 
| |

∗ 100         (1) 

III.  METHODOLOGY/MODELS 

We implemented most of our models using Scikit-learn 
(sklearn), a free software machine learning python library [9]. 
The only exception was the sequential neural network for which 
we used the Keras library, an open-source software library that 
provides a Python interface for neural networks [10].  

In our evaluation, we used two simple models as baselines: a 
linear model using Linear Regression and a KNN. The purpose 
of Linear Regression is to predict the “line of best fit” for a 
distribution [11]. A KNN regressor uses the k-nearest points to 
approximate the value of a given data point [12]. 

 The next model we tested was a sequential neural network. 
A neural network is a computation structure that tries to mimic 
the way the human brain works to learn the underlying patterns 
in a dataset. A neural network consists of three parts: the input 
layer, the hidden layers, and the output. Each layer consists of 
artificial neurons that read data and output results. The relation 
between two neurons from one layer to another is a coefficient 
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called weight, which controls the signal (or strength of the 
connection) between the two neurons. Learning involves the 
continuous adjustments of weights until the optimal weights – 
those that result in the network producing the most accurate 
predictions - are found [13]. A sequential neural network is a 
specific type of network that inputs or outputs sequences (e.g., 
time-series data) [14]. Unlike the other models, which we 
trained on the data from all the companies, the neural network 
was trained only on the historical data from Microsoft. The 

network that obtained the best results had an input layer of 13 
neurons, one dense hidden layer of 10 neurons which used a L1 
kernel regularizer and a ReLU activation function (to ensure the 
outputs for all neurons are positive), and an output layer of 1 
neuron. We used the kernel regularizer to improve convergence 
and prevent overfitting (which occurs when the model is unable 
to generalize due to “memorizing” too faithfully the training 
data) [15], [16]. The network consisted of 151 trainable 
parameters (e.g., weights, biases).  

 

 

Fig. 1 Plot of the opening prices for Microsoft in the last 5 years 
 

To check whether combining the linear model and KNN 
regressor would result in better performance, we used 
ensembled learning in the form of Multiplicative Weight 
Update and an AdaBoost Regressor. Ensembled learning is the 
process by which multiple models, such as classifiers, are 
strategically generated and combined to solve a particular 
computational intelligence task [17]. Multiplicative Weight 
Update is a game theory algorithm used to aggregate different 
predictions in a dynamic manner [18]. AdaBoost is a process of 
generating new predictors, which are trained on parts of the 
dataset the previous predictions did not perform well on [19]. 
Since AdaBoost can only take in one base estimator and we 
needed two, we used a Voting Regressor to create the necessary 
ensembled model. A Voting Regressor is an ensemble meta-
estimator that fits several base regressors to create an 
ensembled model [20].  

IV. RESULTS AND DISCUSSION 

As seen in Table I, which displays the training errors, the 
AdaBoost Regressor performs the worst with the highest 
training error being 2.03% (0.53% worse than the highest linear 
model error, 0.33% worse than the highest KNN error, 1.58% 
worse than sequential neural network error, and 0.66% worse 
than Multiplicative Weight Update). Multiplicative Weight 
Update and the KNN are tied for the second worse. We suspect 
the reason why AdaBoost and Multiplicative Weight Update do 
not perform well is because they depend on the KNN, which 
provides some of the worst performance for predictions. This is 
because unlike, for example, the linear model, it is unable to 

filter out the features that are unhelpful by assigning them very 
small weights, resulting in high inaccuracies. Additionally, 
unlike neural networks which learn on all of the training 
samples, the KNN is only able to learn from the k nearest points.  

In general, the linear model has a training error below 1%, 
meaning that it generates close to accurate predictions. The 
sequential neural network, however, performs the best with 
average percent errors ranging from 0.17% (0.48% better than 
the lowest linear model error, 0.54% better than the lowest 
KNN regressor error, 0.51% better than Multiplicative Weight 
Update, and 0.53% better than AdaBoost) to 0.45% (1.05% 
better than the highest linear model error, 1.25% better than the 
highest KNN error, 0.92% better than Multiplicative Weight 
Update, and 1.58% better than AdaBoost).  

As seen in Table II, which displays the testing errors, the 
KNN performs the worst with the highest average testing error 
of 3.08% (1.35% worse than the highest linear model error, 
2.57% worse than the highest sequential neural network error, 
1.16% worse than Multiplicative Weight Update, 0.44% worse 
than AdaBoost). A reason for this might be overfitting; hence, 
why we see better performance on the training set (highest 
training error is 1.70%) than on the test set. AdaBoost performs 
the second worst, while Multiplicative Weight Update the third 
worst.  

Once again, the linear model provides decent predictions, 
generally achieving less than a 1% error. The sequential neural 
network performs the best with errors ranging from 0.18% 
(0.55% better than the lowest linear model error, 0.93% better 
than the lowest KNN regressor error, 0.63% better than 
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Multiplicative Weight Update, and 0.78% better than 
AdaBoost) to 0.51% (1.22% better than the linear model, 2.57% 
better than the KNN regressor, 1.41% better than Multiplicative 
Weight Update, 2.13% better than AdaBoost).  

 
TABLE I 

TRAINING ERROR OBTAINED FOR EACH COMPANY 

Symbol Company Average Percent Error Obtained from 
Each Model 

MSFT Microsoft Linear Model: 0.68% 
KNN: 0.79% 

Sequential Neural Network: 0.17% 
Multiplicative Weight Update: 0.78% 

AdaBoost Regressor: 0.83%
APPL Apple Linear Model: 0.75% 

KNN: 0.85% 
Sequential Neural Network: 0.32% 

Multiplicative Weight Update: 1.01% 
AdaBoost Regressor: 1.04%

GOOG Google Linear Model: 0.68% 
KNN: 0.83% 

Sequential Neural Network: 0.35% 
Multiplicative Weight Update: 0.81% 

AdaBoost Regressor: 0.95%
ORACL Oracle Linear Model: 0.65% 

KNN: 0.71% 
Sequential Neural Network: 0.30% 

Multiplicative Weight Update: 0.68% 
AdaBoost Regressor: 0.70%

META Facebook Linear Model: 1.50% 
KNN: 1.16% 

Sequential Neural Network: 0.45% 
Multiplicative Weight Update: 1.33% 

AdaBoost Regressor: 1.89%
ADBE Adobe Linear Model: 0.78% 

KNN: 0.82% 
Sequential Neural Network: 0.27% 

Multiplicative Weight Update: 0.93% 
AdaBoost Regressor: 0.95%

AMZN Amazon Linear Model: 0.75% 
KNN: 0.89% 

Sequential Neural Network: 0.31% 
Multiplicative Weight Update: 0.89% 

AdaBoost Regressor: 1.09%
NFLX Netflix Linear Model: 0.83% 

KNN: 1.07% 
Sequential Neural Network: 0.43% 

Multiplicative Weight Update: 0.98% 
AdaBoost Regressor: 1.02%

TSLA Tesla Linear Model: 1.50% 
KNN: 1.70% 

Sequential Neural Network: 0.33% 
Multiplicative Weight Update: 1.10% 

AdaBoost Regressor: 2.03%
CRM Sales Force Linear Model: 0.91% 

KNN: 0.99% 
Sequential Neural Network: 0.37% 

Multiplicative Weight Update: 0.99% 
AdaBoost Regressor: 0.94%

NONE Combined Companies Linear Model: 0.93% 
KNN: 0.84% 

Sequential Neural Network: 0.20% 
Multiplicative Weight Update: 1.37% 

AdaBoost Regressor: 1.43%

 

Furthermore, the sequential neural network seems to 
generalize the best as the majority of the companies have a 
testing error that is less than or equal to the training error: 
Google (both have a training and testing error of 0.35%), Oracle 
(training: 0.30% vs. testing: 0.27%), Facebook (training: 0.45% 

vs 0.43%), Adobe (both are 0.27%), Amazon (both are 0.31%), 
Tesla (training: 0.33% vs. testing: 0.32%), Sales Force (both are 
0.37%), and Combined Companies (training: 0.20% vs. testing: 
0.19%). Additionally, the range of the testing errors (0.18% to 
0.51%) is very close to the range for the training errors (0.17% 
to 0.45%). As such, the sequential neural network is the best 
model from the ones we evaluated.  

 
TABLE II 

TESTING ERROR OBTAINED FOR EACH COMPANY 

Symbol Company Average Percent Error Obtained from 
Each Model

MSFT Microsoft Linear Model: 0.82% 
KNN: 1.33% 

Sequential Neural Network: 0.18% 
Multiplicative Weight Update: 0.88% 

AdaBoost Regressor: 1.10%
APPL Apple Linear Model: 0.89% 

KNN: 1.57% 
Sequential Neural Network: 0.33% 

Multiplicative Weight Update: 1.04% 
AdaBoost Regressor: 1.54% 

GOOG Google Linear Model: 0.73% 
KNN: 1.11% 

Sequential Neural Network: 0.35% 
Multiplicative Weight Update: 0.81% 

AdaBoost Regressor: 1.22%
ORACL Oracle Linear Model: 0.73% 

KNN: 1.18% 
Sequential Neural Network: 0.27% 

Multiplicative Weight Update: 0.82% 
AdaBoost Regressor: 0.96%

META Facebook Linear Model: 1.17% 
KNN: 1.52% 

Sequential Neural Network: 0.43% 
Multiplicative Weight Update: 1.12% 

AdaBoost Regressor: 1.76%
ADBE Adobe Linear Model: 0.85% 

KNN: 1.39% 
Sequential Neural Network: 0.27% 

Multiplicative Weight Update: 0.91% 
AdaBoost Regressor: 1.27%

AMZN Amazon Linear Model: 0.86% 
KNN: 1.40% 

Sequential Neural Network: 0.31% 
Multiplicative Weight Update: 0.91% 

AdaBoost Regressor: 1.03%
NFLX Netflix Linear Model: 1.46% 

KNN: 2.62% 
Sequential Neural Network: 0.51% 

Multiplicative Weight Update: 1.60% 
AdaBoost Regressor: 2.26%

TSLA Tesla Linear Model: 1.73% 
KNN: 3.08% 

Sequential Neural Network: 0.32% 
Multiplicative Weight Update: 1.92% 

AdaBoost Regressor: 2.64%
CRM Sales Force Linear Model: 0.98% 

KNN: 1.62% 
Sequential Neural Network: 0.37% 

Multiplicative Weight Update: 1.03% 
AdaBoost Regressor: 1.21%

NONE Combined Companies Linear Model: 0.90% 
KNN: 1.34% 

Sequential Neural Network: 0.19% 
Multiplicative Weight Update: 0.90% 

AdaBoost Regressor: 1.53%
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Fig. 2 Predicted opening vs. actual opening price for Amazon using 
Linear Regression in $ 

 

 

Fig. 3 Predicted opening vs. actual opening price for Amazon using 
KNN Regressor in $ 

 

 

Fig. 4 Predicted opening vs. actual opening price for Amazon using 
Sequential Neural Network in $; prices are normalized 

 

 

Fig. 5 Predicted opening vs. actual opening price for Amazon using 
Multiplicative Weight Update in $ 

 

 

Fig. 6 Predicted opening vs. actual opening price for Amazon using 
AdaBoost in $ 

 
To visualize the model performance, we plot the predicted 

price versus the actual opening price. Ideally, these two prices 
should be the same, which is shown by the red line (x = y) with 
the slope of one. We visualize the performances of our various 
models for Amazon’s dataset. We call the predictions that are 
noticeably away from the ideal line “outliers”. 

As shown in Fig. 2, in general, predictions lie along the x = 
y line. There is only one outlier; therefore, the linear model 
performs well for Amazon.  

As shown in Fig. 3, the KNN model generates worse 
predictions since more data are further away from the x = y line. 
In this case, we have about four outliers.  

The predictions from the sequential neural network (Fig. 4) 
lie almost perfectly on the x = y line, which shows that this 
model provides almost perfect predictions.  

The predictions provided by Multiplicative Weight Update  
(Fig. 5) are similar to those of the linear model, so this performs 
quite well for Amazon. 

Finally, as shown in Fig. 6, while the predictions provided by 
AdaBoost do not look as bad as those provided by the KNN, 
they contain about the same number of outliers.  

V. CONCLUSION 

To summarize, we trained a linear regressor model, a KNN, 
a sequential neural network and used Multiplicative Weight 
Update and AdaBoost on the stocks over the past 5 years of 
Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, 
Oracle, Salesforce, and Tesla. Through extensive analysis and 
studies, we observed that the deep neural network achieved the 
lowest test errors, the linear model achieved the second-best 
results, and the tree-based AdaBoost and KNN models 
performed the worst.  

As future work, one possible approach to further improve the 
predictions is to use online learning. Online learning involves 
using real-time data, meaning the model is constantly being fed 
in data and updating its parameters. It is useful when the data 
may be changing rapidly over time, like in the stock market 
[21]. Another approach is using Natural Language Processing 
(NLP) and Sentiment Analysis on tweets [22] and news articles. 
This will allow the model to have access to the current state of 
the market and economy to make more informed predictions. 
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NLP is a subfield of Artificial Intelligence (AI) that aims to 
teach computers how to understand, analyze, and contextualize 
language [23]. Sentiment Analysis is the task of classifying 
whether a text has negative sentiment (-1), neutral sentiment 
(0), or positive sentiment (1) [24].  
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