
 

 

  
 

Abstract—Ensemble learning algorithms such as AdaBoost and 
Bagging have been in active research and shown improvements in 
classification results for several benchmarking data sets with mainly 
decision trees as their base classifiers. In this paper we experiment to 
apply these Meta learning techniques with classifiers such as random 
forests, neural networks and support vector machines. The data sets 
are from MAGIC, a Cherenkov telescope experiment. The task is to 
classify gamma signals from overwhelmingly hadron and muon 
signals representing a rare class classification problem. We compare 
the individual classifiers with their ensemble counterparts and 
discuss the results. WEKA a wonderful tool for machine learning has 
been used for making the experiments.  
 

Keywords—Ensembles, WEKA, Neural networks [NN], Support 
Vector Machines [SVM], Random Forests [RF].  

I. PROBLEM DOMAIN 
AGIC [1] is the Cherenkov telescope used to detect the 
gamma rays from the outer universe. It is designed to 

provide vital information on several established gamma-ray 
sources, like Active Galactic Nuclei, Supernova Remnants, 
Gamma Ray Bursts and Pulsars.  

It collects gamma ray events (in little quantities) along with 
many other particle events   represented as images shown in 
the (Fig.1). The pixels making up the image can be converted 
to some set of image parameters also called as hillas 
parameters by various image processing and feature extraction 
techniques [2], which statistically allow a separation of events. 
A gamma ray signal defines an ellipse in the camera plane of 
the telescope where as the other showers make up an error 
ellipse plane (Fig.1). The data sets used in the experiment 
contain 10 image parameters. Due to atmospheric radiations, 
the ground based telescope collects overwhelming events of 
hadrons and muons also called as background. To understand 
the gamma ray sources, it is an important task for separating 
gammas from other particles. There is only a weak  
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discrimination between the gamma and background events, 
making the data an excellent proving ground for the 
classification techniques [2]. Things are further complicated 
by added noise in the data collection by the hardware bias in 
the telescope.  

 As the sources of high-energy gammas are few and their 
signal comparatively weak, creating a case for the rare class 
classification problem.  It will be a daunting task to separate 
the gamma signals from these overwhelming sea of 
background signals, both having very similar characteristics.. 
Classification of signals plays a vital role for making the 
astronomical analysis of gamma ray objects, and any small 
improvements in the classification accuracy will be significant 
in these analysis tasks.  

Automated classification of vector data into existing groups 
is a well defined problem in machine learning.  The task is to 
construct a classifier which associates every data vector to one 
of the groups such that misclassifications are minimized.  

Previous classification studies performed on MAGIC data 
sets shown that random forest, neural networks performed 
better than other classifiers [2].  We used WEKA a machine 
learning framework for making the experiments. WEKA [8] 
uses powerful object oriented programming techniques for 
making ensembles. It provides facilities for using various 
machine learning algorithms as base classifiers for ensembles. 
In this paper we experiment with making the ensembles of 
random forests, neural networks and support vector machines 
and study their performance results. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Signal images from MAGIC Telescope generated after 
various pre-processing and image cleaning techniques 
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II. ENSEMBLES OF CLASSIFIERS 
Ensemble learning algorithms combine “base classifiers” to 

predict the label for the new data points. Experiments on 
several benchmark data sets and real world data sets showed 
an improved classification results from these techniques. In 
this paper we concentrate on 2 ensembles techniques 
AdaBoost and Bagging. We experiment with using neural 
networks [back propagation neural nets], random forests and 
support vector machines as base classifiers. 

The training data set is a collection of the data points 
associated with labels. The data points, usually a vector of 
features (x), and the labels y, are bounded by an underlying 
function f such that y = f(x) for each training data point (x,y) 
[3]. Machine learning algorithms search for a best possible 
hypothesis h  to f  that can be applied to assign labels to new x 
values.  Ensemble learning algorithms construct a set of 
hypothesis { }khhh ,...,, 21  and construct a voted classifier 

( ) ( ) ( ) ( )( )xhxhxhTxH n,...,, 21
* =  to predict the label of 

new data points, where T a criterion to combine the 
hypothesis. 
 

A.    Bagging  
Bagging is a statistical re-sample and combine technique 

[4] based on bootstrapping and aggregating techniques. The 
basic idea of bagging is to use bootstrap re-sampling to 
generate multiple versions of a predictor which, when 
combined, should perform better than a single predictor built 
to solve the same problem.  Bootstrapping is based on random 
sampling with replacement. Therefore, taking a bootstrap i.e., 
(random selection with replacement) of the training set X, one 
can sometimes avoid or get less misleading training objects in 
the bootstrap training set. Consequently, a classifier 
constructed on such a training set may have a better 
performance. Aggregating actually means combining 
classifiers [5]. Often a combined classifier gives better results 
than individual classifiers, because of combining the 
advantages of the individual classifiers in the final solution. 
Therefore, bagging might be helpful to build a better classifier 
on training sample sets with misleaders.  

On average, when taking a bootstrap sample of the training 
set, approximately 37% of the objects are not presented in the 
bootstrap sample, meaning that possible ‘outliers’ in the 
training set sometimes do not show up in the bootstrap 
sample. Thus,      better classifiers (with a smaller apparent 
error – classification error on the training data set) may be 
obtained by the bootstrap sample than by the original training 
set. These classifiers will be presented ‘sharper’ in the 
apparent error than those obtained on the training sets with 
outliers. Therefore, they will be more decisive than other 
bootstrap versions in the final judgment. Thus, aggregating 
classifiers in bagging can sometimes give a better 
performance than individual classifiers. 
 
 
 
 
 

B.  AdaBoost 
Boosting works by repeatedly running a learning algorithm 

on various distributions over the training data, and then 
combining the classifiers produced by the learner into the 
single composite classifier [6].  The boosting algorithm takes 
as input a training set of m examples  

( ) ( )( )mm yxyxS ,,...,, 11=  where each instance ix  is a 

vector of attributes drawn from the input space X and iy  

belonging to finite label set Y ,   is the class label associated 
with ix . In boosting classifiers and training sets are obtained 
in a strictly deterministic way. Both training sets and 
classifiers are obtained sequentially in the algorithm, in 
contrast to bagging, where training sets and classifiers are 
obtained randomly and independently from the previous step 
of the algorithm. At each step of the boosting, training data 
are reweighed in such a way that incorrectly classified objects 
get larger weights in a new modified training set [7]. 
AdaBoost manipulates the training examples to generate 
multiple hypotheses. It maintains the probability distribution 

( )xpl  over the training examples. In each iteration l , it 
weights the training samples with the probability 
distribution ( )xpl . The learning algorithm is then applied to 

produce the classifier lh . The error rate lε  of this classifier on 
the training examples is computed and used to adjust the 
probability distribution on the training examples. The effect of 
the change in the weights is to place more weight on training 
examples that were misclassified by lh  and less weight on 
examples that were correctly classified in the last stage. In 
subsequent iterations, therefore, AdaBoost tend to construct 
progressively more difficult learning problems. The final 
classifier, finalh , is constructed by a weighted vote of the 

individual classifiers nhhh ,..., 21 .  Each classifier is weighted 

according to its accuracy for the distribution lp  that it was 
trained on. 
 

C.   Dealing with Rare Class Problem  
The MAGIC data sets provide with a rare class 

classification problem. In this paper we used a one night 
observation of  telescope data which contains 90% of  hadron 
signals [ negative examples, making a majority class ] and 
only 10 % of gamma signals [ positive examples, making a 
minority class ] . Traditional machine learning algorithms may 
be attracted towards the majority class, thus producing poor 
predictive accuracy over the minority class. Ensembling 
techniques have proved to be performing better in the context 
of the rare classes [12].  In this paper we concentrate on 
boosting and bagging techniques for addressing this problem.  
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III. BASE CLASSIFIERS USED IN EXPERIMENT 
The base classifiers are well known in machine learning 

literature. Here we briefly outline the algorithms. 
 

A.   Back-Propagation Neural Network [BPNN] 
One fundamental weakness of neural networks is that they 

are very sensitive to the training data sets (i.e.) small changes 
in training set and/or parameter selection can cause large 
changes in performance. They are unstable or exhibit 
variance.  This instability is magnified when real-world 
systems such as MAGIC data sets are modeled as they contain 
more noise and dominated by only one class events.  

In boosting each t-th neural network uses a different 
training set at each epoch, by resampling with replacement 
after each training epoch. After each epoch, a new training set 
is obtained by sampling from the original training set with 
probabilities ( )iPt . Training continues until a fixed number of 
pattern presentations has been performed. The training cost 
that is minimized for a pattern is the i-th one from the original 

training set is  ( )
2^

,
2
1

⎟
⎠
⎞

⎜
⎝
⎛ −∑ ijij

j
t zzjiD  [9]. We used a 10-

5-2 architecture [ 10 input neurons, 5 hidden neurons, 2 output 
neurons one for gamma and  one for background] with 
learning rate as 0.2 and momentum factor as 0.3. 10 neural 
nets are used with each neural network trained for 20 
iterations.  

Bagging can be successively used to overcome the 
instability of neural networks.  The individual neural networks 
architecture and parameters are same as that used for boosting. 
Bagged neural network has shown slight improvements in 
classification compare to that of individual neural nets.   

B.  Random Forests [RF] 
Random forests are one of the most successful ensemble 

methods that are fast, robust to noise, do not over fit and 
offers possibilities for explanation and visualization of its 
output. In the random forest method, a large number of 
classification trees are grown and combined. Two random 
elements serve to obtain a random forest, bagging and random 
split selection. Bagging is done here by sampling multiple 
times with replacement from the original training data set. 
Thus in the resulting samples, a certain event may appear 
several times, and other events not at all. About 2/3rd of the 
data in the training sample are taken for each bootstrap 
sample. Random split selection is used in each trees growing 
process. The tree growing begins with all cases being 
contained in the root node. The root node is then split by a cut 
using one of the image parameters, into two successive nodes 
to achieve a classification by separation of the classes. When 
using a total of 10 image parameters, three (square root of 
total, an experimental best value) are chosen randomly 
(uniformly distributed) from the total 10. The image parameter 
yielding the smallest Gini-index [10] among these three is 
used for splitting. Using only one random variable for 
selection was not sufficient, but using two or four parameters 

yield a result very similar to what is obtained with three 
variables. 

Subsequently, the same procedure is applied to each branch 
in turn. The tree growing stops only when all nodes contain 
pure data, i.e. from one class only. These nodes are then called 
terminal nodes and receive their class label from the training 
data. No pruning is performed. Using unpruned trees (in 
general poor classifiers) requires a reasonably large number of 
them to be combined. For our data, growing 20 trees turns out 
to be sufficient: the quality of the classification in terms ROC 
plot remains unchanged after a certain number of trees has 
been reached (Figure 2). Combining classifications from the 
trees is simply done by calculating the arithmetic mean from 
the 20 classifications of all trees (considered as 0 and 1). The 
results are verified with WEKA, Breiman original FORTRAN 
sources for the Random Forests technique. The simple 
arithmetic mean for combination seems to be adequate when 
dealing with a reasonably large number of unpruned trees. We 
also tried weighted combinations of trees using several 
different estimates of confidences of the prediction in 
individual leaves, but this gave better results only for a very 
small number of trees [less than 10]; which is too small a 
number to assure convergence in classification error. This fits 
well with the assumption that a large enough forest is less 
sensitive to variance than to bias.  

Random Forests are themselves proved to be powerful 
classifiers, and given good results for MAGIC data sets. The 
ensembles of random forests have further improved the 
classification accuracy. For both bagging and boosting, the  
random forests of 20 trees, each constructed while considering 
four random features have been used as base classifiers and 
iterated for 10 times. Further increase in trees and iterations 
does not shown any improvements.  

C.  Support Vector Machines [SVM] 
SVM's are becoming increasingly popular in the machine 

learning and computer vision communities. Training a 
Support Vector Machine (SVM) requires the solution of a 
very large quadratic programming (QP) optimization problem. 
In this study we use a variant of SVM for fast training using 
sequential minimal optimization [11].  SMO breaks this large 
QP problem into a series of smallest possible QP problems 
avoiding large matrix computation. The amount of memory 
required for SMO is linear in the training set size, which 
allows SMO to handle very large training sets.   SMO's 
computation time is dominated by SVM evaluation; hence 
SMO is fastest for linear SVMs and sparse data sets. SVM 
ensembles can improve the limited classification performance 
of the SVM. In bagging, each individual SVM is trained 
independently, using randomly chosen training samples via a 
bootstrap technique. In boosting, each individual SVM is 
trained using training samples chosen according to the 
sample’s probability distribution, which is updated in 
proportion to the degree of error of the sample. 
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TABLE I 
COMPARATIVE STUDY OF 4 CLASSIFIERS AND THEIR ENSEMBLES 

Model Name Classificatio
n  
Accuracy[%] 

ROC 
Area 

Mean 
Error 
rate 

Time 
taken  
[In 
seconds] 

Random 
Forests [RF] 

78.9085 0.818 0.2748 120  

Bagged RF 81.2461 0.8753 0.276 495  
Boosted RF 79.9527 0.8481 0.2006 518 
Back 
propagation 
Neural net 
[BPNN] 

79.28 0.8651 0.2644 158 

Bagged 
BPNN 

80.1893 0.8666 0.2888 513 

Boosted 
BPNN 

81.7508 0.8671 0.2564 547 

C5.0 
Classification 
trees  

76.9716. 0.8051 0.2941 98 

Bagged C5.0 80.789 0.8582 0.2794 483 
Boosted C5.0 77.1707 0.8309 0.2291 503 
Support 
vector 
machines 
[SVM] 

68.5016 0.5842 0.315 189 

Bagged SVM 68.99 0.6028 0.3105 543 
Boosted SVM 69.3691 0.7529 0.3739 614 
 

IV. COMPARATIVE STUDY OF CLASSIFICATION RESULTS 
Table I shows the classification results for Random forests 

(RF), Back propagation neural networks [BPNN], 
Classification Trees and Support vector machines [SVM] 
along with their bagged and boosted ensembles.  Though the 
ensembles take much time than single classifiers they produce 
improved classification results. We saw significant 
improvements with bagged random forests. Adaboosted 
random forests also showed improved classification results 
though they are inferior to that of bagged ones. In neural 
network category, Boosted neural network has shown 
improved accuracies with bagged MLP standing second. 
Support vector machines have shown inferior results compare 
to other classifiers, supporting the results from [2]. The 
ensembles of SVM shown improvements in the results but less 
accuracies compare to that of RF or neural networks.  

The statistical measures used in the comparative study are 
the following  
 

• ROC curves: A Receiver Operating Characteristic 
(ROC) curve summarizes the performance of a two-
class classifier across the range of possible 
thresholds.  It is recommended for comparing 
classifiers, as it does not merely summarize 
performance at a single arbitrarily selected decision 
threshold, but across all possible decision thresholds.  
It plots the sensitivity (class two true positives) 

versus one minus the specificity (class one false 
negatives). An ideal classifier hugs the left side and 
top side of the graph, and the area under the curve is 
1.0. 

 
• Classification accuracy:  The classification 

accuracy for a classifier is defined as percentage of  
number of correctly classified samples to the total 
number of samples. 

 
• Mean absolute Error:  It is the ratio of Incorrectly 

Classified Instances to that of Total Number of 
Instances. 

 

V. DISCUSSION 
Figure 2.1, 2.2 make a comparative chart of ROC for 

bagged and boosted ensembles. The ensembles have shown 
classification improvements for all algorithms. Though they 
take more time for training, it is important for MAGIC 
experiment as analysis of gamma ray events are heavily 
dependent on classification accuracies.  

In overall rankings Boosted neural networks, Bagged 
random    forests have shown superior results. Bagging has 
shown good results with tree based classifiers, especially for 
random forests. Though neural networks benefited from 
bagging but they got better accuracies with boosting. Support 
vector machine also shown improvements in accuracies but at 
the cost of large training times. The future work will be 
concentrated on introducing more base classifiers and 
experimenting with other ensemble techniques such as multi-
boost, random committee.  
 

 
Fig. 2 ROC Comparison for Bagged Ensembles 
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                     Fig. 3 ROC comparison for Boosted ensembles 
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