Search results for: Common linear co-positive Lyapunov functions
3854 Modeling and Identification of Hammerstein System by using Triangular Basis Functions
Authors: K. Elleuch, A. Chaari
Abstract:
This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19203853 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7793852 A Variable Structure MRAC for a Class of MIMO Systems
Authors: Ardeshir Karami Mohammadi
Abstract:
A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15803851 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.
Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25763850 An Iterative Algorithm for KLDA Classifier
Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang
Abstract:
The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19573849 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4883848 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System
Authors: A. El Ougli, I. Lagrat, I. Boumhidi
Abstract:
In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18293847 Geometric Properties and Neighborhood for Certain Subclasses of Multivalent Functions
Authors: Hesam Mahzoon
Abstract:
By using the two existing operators, we have defined an operator, which is an extension for them. In this paper, first the operator is introduced. Then, using this operator, the subclasses of multivalent functions are defined. These subclasses of multivalent functions are utilized in order to obtain coefficient inequalities, extreme points, and integral means inequalities for functions belonging to these classes.
Keywords: Coefficient inequalities, extreme points, integral means, multivalent functions, Al-Oboudi operator, and Sãlãgean operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6983846 Bi-linear Complementarity Problem
Authors: Chao Wang, Ting-Zhu Huang Chen Jia
Abstract:
In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.
Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17253845 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices
Authors: Qinyi Mei, Li-Ping Wang
Abstract:
MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.Keywords: Linear diffusion layer, circulant matrix, lightweight, MDS matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8533844 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem
Authors: H. Taghvafard, G. H. Erjaee
Abstract:
A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23853843 Modified Buck Boost Circuit for Linear and Non-Linear Piezoelectric Energy Harvesting
Authors: I Made Darmayuda, Chai Tshun Chuan Kevin, Je Minkyu
Abstract:
Plenty researches have reported techniques to harvest energy from piezoelectric transducer. In the earlier years, the researches mainly report linear energy harvesting techniques whereby interface circuitry is designed to have input impedance that match with the impedance of the piezoelectric transducer. In recent years non-linear techniques become more popular. The non-linear technique employs voltage waveform manipulation to boost the available-for-extraction energy at the time of energy transfer. The fact that non-linear energy extraction provides larger available-for-extraction energy doesn’t mean the linear energy extraction is completely obsolete. In some scenarios, such as where initial power is not available, linear energy extraction is still preferred. A modified Buck Boost circuit which is capable of harvesting piezoelectric energy using both linear and non-linear techniques is reported in this paper. Efficiency of at least 64% can be achieved using this circuit. For linear extraction, the modified Buck Boost circuit is controlled using a fix frequency and duty cycle clock. A voltage sensor and a pulse generator are added as the controller for the non-linear extraction technique.
Keywords: Buck boost, energy harvester, linear energy harvester, non-linear energy harvester, piezoelectric, synchronized charge extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24353842 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression
Authors: Baoguang Tian, Nan Chen
Abstract:
A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.
Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24733841 A Laser Point Interaction System Integrating Mouse Functions
Authors: Ching-Sheng Wang, Lun-Ping Hung, Sheng-Yu Peng, Li-Chieh Cheng
Abstract:
The computer has become an essential tool in modern life, and the combined use of a computer with a projector is very common in teaching and presentations. However, as typical computer operating devices involve a mouse or keyboard, when making presentations, users often need to stay near the computer to execute functions such as changing pages, writing, and drawing, thus, making the operation time-consuming, and reducing interactions with the audience. This paper proposes a laser pointer interaction system able to simulate mouse functions in order that users need not remain near the computer, but can directly use laser pointer operations from at a distance. It can effectively reduce the users- time spent by the computer, allowing for greater interactions with the audience.Keywords: laser pointer, presentation, interaction, mousefunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16533840 Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach, Distributed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15683839 H∞ State Estimation of Neural Networks with Discrete and Distributed Delays
Abstract:
In this paper, together with some improved Lyapunov-Krasovskii functional and effective mathematical techniques, several sufficient conditions are derived to guarantee the error system is globally asymptotically stable with H∞ performance, in which both the time-delay and its time variation can be fully considered. In order to get less conservative results of the state estimation condition, zero equalities and reciprocally convex approach are employed. The estimator gain matrix can be obtained in terms of the solution to linear matrix inequalities. A numerical example is provided to illustrate the usefulness and effectiveness of the obtained results.
Keywords: H∞ performance, Neural networks, State estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14463838 An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays
Authors: Ozlem Faydasicok, Sabri Arik
Abstract:
This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.Keywords: Stability Analysis, Neutral-Type Neural Networks, Time Delay Systems, Lyapunov Functionals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16383837 Robust BIBO Stabilization Analysis for Discrete-time Uncertain System
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The discrete-time uncertain system with time delay is investigated for bounded input bounded output (BIBO). By constructing an augmented Lyapunov function, three different sufficient conditions are established for BIBO stabilization. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Two numerical examples are provided to demonstrate the effectiveness of the derived results.
Keywords: Robust BIBO stabilization, delay-dependent stabilization, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15903836 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System
Authors: S. Hariharan, P. Muthuchidambaranathan
Abstract:
In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.
Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20223835 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: Force variations, linear direct drive, modeling and system identification, variable excitation flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10333834 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12873833 Design of MBMS Client Functions in the Mobile
Authors: Jaewook Shin, Aesoon Park
Abstract:
MBMS is a unidirectional point-to-multipoint bearer service in which data are transmitted from a single source entity to multiple recipients. For a mobile to support the MBMS, MBMS client functions as well as MBMS radio protocols should be designed and implemented. In this paper, we analyze the MBMS client functions and describe the implementation of them in our mobile test-bed. User operations and signaling flows between protocol entities to control the MBMS functions are designed in detail. Service announcement utilizing the file download MBMS service and four MBMS user services are demonstrated in the test-bed to verify the MBMS client functions.Keywords: BM-SC, Broadcast, MBMS, Mobile, Multicast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19303832 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14443831 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12593830 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation
Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang
Abstract:
In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.
Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18923829 Geometrically Non-Linear Free Vibration Analysis of Functionally Graded Rectangular Plates
Authors: Boukhzer Abdenbi, El Bikri Khalid, Benamar Rhali
Abstract:
In the present study, the problem of geometrically non-linear free vibrations of functionally graded rectangular plates (FGRP) is studied. The theoretical model, previously developed and based on Hamilton’s principle, is adapted here to determine the fundamental non-linear mode shape of these plates. Frequency parameters, displacements and stress are given for various power-law distributions of the volume fractions of the constituents and various aspect ratios. Good agreement with previous published results is obtained in the case of linear and non-linear analyses.
Keywords: Non-linear vibration, functionally graded materials, rectangular plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22463828 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.
Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14963827 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums
Authors: I. Zamani, M. H. Zarif
Abstract:
In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.
Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25143826 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses
Authors: Xiaomei Wang, Shouming Zhong
Abstract:
In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.
Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14823825 Process Analysis through Length Consistency
Authors: James E. Ponder
Abstract:
The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.
Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539