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Exponential Stability Analysis for Uncertain Neural
Networks with Discrete and Distributed
Time-Varying Delays
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Abstract—This paper studies the problem of exponential stability
analysis for uncertain neural networks with discrete and distributed
time-varying delays. Together with a suitable augmented Lyapunov
Krasovskii function, zero equalities, reciprocally convex approach
and a novel sufficient condition to guarantee the exponential stability
of the considered system. The several exponential stability criterion
proposed in this paper is simpler and effective. Finally,numerical
examples are provided to demonstrate the feasibility and effectiveness
of our results.
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1. INTRODUCTION

ECURRENT years neural networks have been studied
Rextensively and have been widely applied within a kind
of engineering fields such as associative memories, neuro
biology, population dynamics, and computing technology[1-9].
Existing stability criteria can be classified into two categories,
that is, delay-independent ones and delay-dependent ones. It
is well known that delay-independent ones are usually more
conservative than the delay-dependent ones, so much attention
has been paid in recent years to the study of delay-dependent
stability conditions.

Although neural networks can be implemented by very large
scale integrated circuits, there inevitably exist some delays
in neural networks due to the limitation of the speed of
transmission and switching of signals. It is well known that
time-delay is usually a cause of instability and oscillations of
recurrent neural networks. Therefore, the problem of stability
of recurrent neural networks with time-delay is of importance
in both theory and practice.

The problem of exponential stability analysis for uncertain
neural networks with discrete and distributed time-varying
delays has been studied by many investigators in the past
years.mang known results,the time-varying delays varies from
0 to an upper bound,but in practice the delay of lower bound
is not restricted to be 0, In this paper, we considered the

This work was supported by the National Basic Research Program of
the China(2010CB732501) and the National Nature Science Foundation of
China(61273015).

Miaomiao Yang Shouming Zhong are with the School of Mathematics
Science, University Electronic Science and Technology of China, Chengdu
611731, PR China.

Shouming Zhong is with Key Laboratory for NeuroInformationof Ministry
of Education, University of ElectronicScience and Technology of China,
Chengdu 611731, PR China.

Email address:miaomiaoyang1989@163.com

International Scholarly and Scientific Research & Innovation 8(1) 2014

Shouming Zhong

relationship between the time-varying delay and its lower and
upper bound, by means of the Lyapunov-Krasovskii function
and the linear matrix inequality(LMI) approach, Note that
LMIs can be easily solved by using the Matlab LMI toolbox,
Finally numerical examples given to illustrate the effectiveness
of the proposed methods.

Notation: Throughout this paper, the superscripts’ — 1/, "T”
stand for the inverse and transpose of a matrix, respectively; "
denotes an n-dimensional Euclidean space;R"**" is the set of
all m x n real matrices; P > 0 means that the matrix P is
symmetric positive definite; I is an appropriately dimensional
identity matrix.

II. PROBLEM STATEMENT

Consider the following neural networks with time-varying
delays:

2(t) = —(C+ AC(t))z(t) + (A+ AA(>))g(2(t))
4 (B+AB(1)g(2(t — 7(1))) + (D + AD(t))
<[ ateonis + W

—d
z(t) = ¢(t),t € [-72,0]

where 2(t) = [21(t), 22(t), ..., 2, (t)]T € R™ is the neuron
vector,g(z(t))) = [g(z1(t)),9(22(1)),- .., g9(za(1))]T € R"
is neuron activation function,C' = diag{c1,ca,...,cn} >0,
A€ R B € R™*™are the connection weight matrices,and
and the delayed connection weight matrices, respectively, p =
(41, 12, - - . , ] Tis constant input vector, AC(t),AA(t),AB(t),
AD(t) are the parametric uncertainties of system matrices of
the form
AC(t) =WF({t)E.,AA(t) = WF(t)E,,AB(t) = WFE(t)Ep,
AD(t) =WF(t)Eq

2
with
FT(t)F(t) < I, ¥t > 0. 3)
and 7(t) is a continuous time-varying function which satisfies

0<7m <7(t) <72, 7(t) <u @

where 7 and v are constants.
The following assumption is made in this paper.
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Assumptionl.The neuron activation functions g;(-) in (1) are
bounded and satisfy
71‘,7 S gl(x) 7gl(y> S Vjvxvy e §R7x # y?i = ]"27"'7n
T —y
(%)

Where ’yi_,fy;r(i =1,2,---,n) are positive constants.

Assumption] guarantees the existence of an equilibrium
point of system(16).Denote thatz* = [z],25,...,2] is the
equilibrium point. Using the transformationz(-) = z(-) — z*
system (1) can be converted to the following error system:
#(t) = —(C+ AC(t))z(t) + (A+ AA(®)) f(x(t))

+ (B+AB())f(z(t —7(t))) + (D + AD(t)) ©)

x f(z(s))ds

t—d
where z(t) = [z1(t), 22(t), ..., 7, (t)]T € R™ is the neuron

vector, f(x(t)) = [fi(21(t)), fa(@2(t)). - ., fu(za(t)]" € R"

denotes the neuron activation function.f;(z(-)) =
9i(z () —gi(zf),i=1,2,...,n.

__ Jilw(t)) + .
- ST 4 )y =0,i=1,2, ..., 7
WE T S fi(0) = 0,1 n ©)
System(6) can be written as

#(t) =— Cx(t) + Af(z(t)) + Bf(x(t — 7(t))) + D

X fx(s))ds + Wp(t)

t—d
p(t) =F(t)(—Ecx(t) + Eaf(2(t)) + Epf(x(t — 7(t)))
+ Ey /tid f(z(s))ds
)
By translating d to function d(t), we have
i(t) = — Ca(t) + Af (x(t) + Bf (2t — 7(t))) + D
<] (x(s))ds + Wp(t)
p(t) =F(t)(—Ecx(t) + Eo f(2(t)) + Epf(z(t — 7(t)))
wE [ s
9

where 0 < d(t) < d.

Definition1.The equilibrium point of system (16) is said to be
globally exponentially stable,if there exist scalars £ > 0 and
£ > 0 such that

lz(t)]| < Be™™ sup_ [[6(s) = =", ¥t > 0.

—T25S

(10)

Lemma 1.[9].For any constant positive matrix Z = Z7 > 0,
Z € R"*" scalars hy > ho > 0, such that the following
integrations are well defined, then

h1
—(ho — hl)/h 27 (s)Zx(s)ds
: (11)

< - /}h1 a2 (s)dsZ /h1 x(s)ds

12 ha
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Lemma 2.[10|The following inequalities are true:

0< /0 [fi(s) =i slds < [fi(wi(t)) — 27 @i(t)]ai(t)
12)

0= /0 [i"s = fi(s)lds < [y ai(t) + fi(ws(t)]aa(t)
13)

Lemma 3.[11] For all real vectors a,b and all matrix Q > 0
with appropriate dimensions, if follows that:
2aTb < aTQa+bTQ b (14)
Lemmad4.[12] Given symmetric matrices Q and D, FE, of
appropriate dimensions,

Q+ DF(t)E + ETF(t)DT <0

for all F(t) satisfying F7(t)F(t) < Lif and only if there
exists some € > 0 such that

Q+eDDT + e 'ETE < 0. (15)

ITII. MAIN RESULTS

In this section, we propose a new exponential criterion
for the uncertain neural networks with time-varying delays
system(9).First,we let AC(t) = 0,AA(t) = 0,AB(t) = 0
and AD(t) = 0 ,the system as following:

@(t) = —Cu(t) + Ag(x(t)) + Bg(z(t — 7(t)))

t 1
+ D g(z(s))ds (16)
t—d(t)

Now, we have the following main results.

Theoreml.For given scalars I'y = diag(y; .75 5---57)
Iy = diag('yfr,’y;r,...,’y;f), d>0,u<1, 70 =79 —711, the
system(16) is globally exponential stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices, Q; (i = 1,2,...,6), R; (i = 1,2,3,4),

Si1 Sz Si3
P, S = | % Sy Sos|, positive diagonal matrices M,
k % 533
M2’ Al = di&g()\l,)\Q,...,An), A2 = diag(517(527...,(5n)
such that the following LMIs hold:
-611 €12 €13 0 0 0 0 0 619-
* €99 €93 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* * * €44 €45 €46 0 0 0
E=|x x x * es5 es6 esr 0 0 <0
* * * * * €66 €67 €68 0
* * * * * er7 erg 0
* * * * * x* egg 0
* * * * * * * €99
) - an
194 1SN1:0000000091950263
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€11 €12 €13 0 0 0 0 0 €19
* €29 €923 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
x ok ok fag 0 fag far 0O
F = * * * * €55 f56 €57 0 0 S 0
* * * * * €66 f67 €68 0
koox ok ox % frr fis 0O
* * * * * * egg O
* * * * * * * €99
) (18
-611 €12 €13 0 0 0 0 0 619-
* €99 €93 0 0 0 0 0 €929
* * €33 €34 0 0 0 0 €39
* % % g 0 0 gar gus O
G = % * * * €55 f56 (54 0 0 S 0
* % k% x  ges for ez O
* * * * * x  frr erg O
* * * * * * x* egg O
% * * * * X * * €99
] (19

1y = 2kP — PC — CP — 4kT', A\,
+ (%)QC(Rl 4 Ro+ R3)C —

—C(T2Ay —T1Ay)
(ToAy —T1A1)C

n i Qi + 4kDyAy — 20 M, Ty
e = PA +2kA; — (A — A2)C + (ToAs — T1A1)A

— 2kAy — (E) C(Ry + Ry + R3)A + My (Ty +Tp)
e15 = PB + (TyAs — T1A1)B — (T;)Q) C(Ry + R + R3)B
e19 = PD + (TaAy — T1A1)D — (T;f) C(Ry + Ry + R3)D
€32 = (A1 — Ao)A — 20, + (%)QAT(Rl + Ry + R3)A

+ AT(A; — Ay)

eo3 = (A1 — A)B + (712) AT(Ry + Ro + R3)B
T

€20 = (A — Ag)D + ( 12) AT(Ry + Ry + Rs)D

ess = (222BT(Ry + Ry + R3)B — 2M,

e 272 (1 —u)Qg, €30 = Ma(T'y +T)

€39 = (7-12) BT(Rl + Ry + Rg)D

es = —€ 22 (1 —u)Qy — 92k =52 R3
— 21 MsTs
ess = e 2F S R3,e46 = €72kw33
€55 = _67216@ e 2km1 Qs + o2k Sii
es6 = € KT Sy 57 = e 2T G5
€66 = —672k271+fz (Q3 + S11 + R3 + Rs)
+ e 2km (522 — Rl)
e = _6_2k2f1+‘r2 512 e 2k27—2+ 1 RQ +e 2k7’1523
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—2k —2k 22t
err=e 1S3 —e 5 (Ry + Qq)
_op2T1itT2 +72 _op2T1tT2
—e Sag,e78 = —e¢ 3 Saz
—2f 2Lt —2kT
egg = —¢ Sz3 — 2(Qs + Ry)

egp = (%)QDT(Rl 4 Ro+ Rs)D — e~ 2*R,

271 47o
—2k =13

f44 = 7672]67—2(1 — U)Ql — 26 R2
— 211 My
o 2TitT 27‘1+‘r2 2Tt
fis =¢ Ry, far = e 3 Ry,
_ _92T1tT2
f56 =e 2’”15 +e 2k R3
—2 2T tT2 —2k
for = —e S12 +e 7T So3
_op2T1tT2 _
frs = —e T3 Syy fe R,
o —Qles —2k 2T2;T1 R —QkTgR
frr=e 33 —€ (R2 +Q4) —¢ 1
gas = —e (1 —w)Qy — 2722 Ry — 2T, Mol

gar =222 Ry, gus = 2¢ 7 Ry
271 47
—2k 13 2 (QS + S11 + RZ) + 672167'1522

g6 = —€

Proof: Construct a Lyapunov function as follows:

6
Viw) =D Vi(w)
where
Vi(zy) = et (t) Pa(t)

+/ 22T (5)Qox(s)ds

t—T

. 1

+/t - e 2T (5)Qsx(s)ds
t

+/t fim e?ks g (s)Q4x(s)ds
t

+/ 2ks Q5$($)
t—To

¢ 2k5 T
+ / o ST ) Qe o))

T
T x(s) S Siz
V4(5L"t / ™ +2-r x(s - ngﬁ) * S22
p_T2t2m1 (8 2(7—23—71)) * "
- 72371 ds

2(7‘2 T1) )
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_ 27947 ¢

T2 — T1 g o2k
Vi) = 2 / o
—T2 t+6

_Tot27 n
/ *s3(s)T Rod:(s)dsdf
t+60

(s)T R4 (s)dsdf

T2 —T1 R 2
+
3 272+71
t
e Bl / / o2
72+271 t+0

wr=af, [ s

The time derivative of V'(x;) along the trajectory of system
(16)is given by

(8)T R3i(s)dsdf

(s))Raf(z(s))

6
Viw) =y Vilwe)
i=1
where
Vi(zy) = 2ke® 2T (1) Pa(t) + 2e* 2T (t) Pi(t) (20)
. n x;(t)
Vater) = ke YL [N fi) — 27 s)ds
i=1 70

+ / 8i(v s — fi(s))ds] + 26 [(fT (w(t))
0

— 2T (OT)A(t) + (@ ()2 — f7 (2(1)) Ad (1))
20

‘/3(-7515) < 62kth(t

) Qia(t) — ) (1 - w)

i=1

x ol (t —7(t))Qua(t — 7(1)) + € f(2() Qo f " (x(1))

— er(t_Tl)a:T(t —71)Q2x(t — 71)

T4 2 2
_ egk(t_%)mT(t T+ TQ)QS ( 7_1;‘7_2)
ratr 2 2
762k(t_22%)1’T(t 72+71)Q4 ( 7_1;'7_2)

— 2R=m2) Tt — 1) Qs (t — 72)
— 2R (1 ) fa(t — 7(1)) Qe f T (x(t — (1))

(22)
T
x(t —m) S Sz Sz
V4(£Et) S 62k(t 71) a:(t 27—1;—7—2) * 522 523
x(l — 2k * % Sag
z(t—11)
x [a(t — 2n72)
.CL’(t _ 27’2;71)
T1 T2 T
i ot — 202 S11 Sz Si3
2k(t ) {L‘(t — 2‘@%) * Soo  Sos
JU(t — 7'2) * * 533
I(t _ 27’1;-72)
X |a(t — 22
z(t — 72)
(23)
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Va(ae) = (P02 (6)(Ry + Ra + Ry)i (1)

279+7)

— 3
2 3 n / e (s)Ryi(s)ds
t—72

271479

— t 3
_ron / 33T (5) Ry (s)ds
3 t— 2*2;71

t—m1
2N o2ks ;T
3 2714719
t—20t72

(H)When 71 < 7(t) < 2”% Based on the bounds lemma
of[16], we have

t7
T — T1 i
3 27147
t— 13 2

(24)

(s)Rzx(s)ds

€263 3T (5) Ryir(s)ds < e2R(t=7572)

.%'(t—Tl) 17 *Rg Rg 0
x | x(t—7(t)) x  —2Rs Rs
|z(t — 7271;72 )] * * —Rs
z(t— 1)
x | x(t—7(t))
a(t — 22|

(25)
t—2724T
Ty — T
_ T . 1/ 2055 T (6) Ry (s)ds < —e2k(t=T2)
t—7o
& 2
X [$(t_ 7'2;-7'1) _x(t_TZ)}TRl[.%'(t— 7-2;_7.1)
— .Z‘(t — 7-2)]
(26)
Ty — T t— 2t N
2 3 1/ A e2ksx'T(s)R2:t(s)d5§ *e2k(t_%)
t—2z2tn
2 9 ,
* ot = TI?TTQ) —a( TQ;TI )" Rox(t — el +Tz)
27—2 + 71
—at——5—)
27)
(2IWhen 25552 < (1) < 2552 we have
To — T t— 2t »
_%/ . e2ijT(s)R2j(s)dS < er(t_%)
t—2z2tn
[w(t — 22572 "T-Ry, R 0
x | a(t—r1(t)) . _oR, Ry
b-2m)] [+ s R,
[(t — 27572
x|l =()
o (t — 22
(28)
t— 27271
_ %/ e2ks ; T(s)Rla'( )ds < — 2k(t—72)
t—7o
: 2
X [z(t — 72;—71) —a(t =) Rafw(t — 72;_ T1)
—z(t — 1))
(29)
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T2 T /tﬁ 25T (6) Ryir(s) < _p2h(t— 22 (DWhen 7 < 7(t) < 2772 According to (17),from
3 2t B (20) — (27),(34) — (36).Then one can obtain
2
 [a(t — 1) — a(t — 2 ; T Rafa(t — 1) Viay) < 2T (t)EE(t)] < 37)
(- 21 + T 1 where
3 30 () =[x (1), f(x(®), fa(t —7(t))), a(t = 7(t)), 2(t — 1),
( ) 27’1 + T2 27’2 + T1
2 (t — ) x(t — ), a(t = 72),
(3)When % < 7(t) < 2. Based on the bounds lemma , 3
of[16], we have / Fla(s))ds
B td(ﬁ)(())]
2= T1 s . . _
B / 3T (s) Rui(s)ds < e?F(772) (2)When 2752 < 7(t) < 22471 According to (18), from
t -T;(t st . B . (20) — (24), (28) (30), (34) — (36). Then one can obtain
— =5t — I 1 .
S ERE0) « 2R, R V(w) < MET () FE()] <0 (38)
z(t—72) | * S 151 (3)When 22T < 7(t) < 7 According to (19), from
[(t — 227 (20) — (24), (31) — (36).Then one can obtain
| i V() < T (0)GE(®)] < 0 (39)
x(t —
- ’ 31) Therefore, if (17)—(19), are satisfied, the system is globally
exponentially stable.
{—2ritTa On the other hand,
=B T () Ryi(s)ds < —e** T Vi) < Amax(P)[#(0)[* € Amax(P) sup [ (s)]?
3 t— 272471 —75<5<0
2 2 2 (40)
x falt = ) (T Ryl - L)
el Va(ao) < 2[(2(0)) — T1(0)] " Ax(0) + 2[C2(0)
‘ 3 ) — f((0)]" Ax(0)
< 2max(T2 = T1)Amax (8) + Amax(8) @D
2
t—m X su x(s
B T2 ;7'1/ . erS.i'T(S)Rg.%"(S) < _egk(t,w) 77—251350” ( )H
t— 7'13 T2
21 + T
2 L 2 .
X [.Z’(t _ 7—1) _ fIJ(t _ 71 ;_ T2 )]TRg[.Z'(t _ 7—1) ‘/Ei(x()) (TQ)\H]&X(QI) + Tl)\mdx(QQ) 3 Ade(Qs)
2
_ .Z'(t _ 2T1 + T2 )] + n _; 2 Amax(Qél) + TQAmaX(QS) + TQ’YAmax(QG))
3
33) x sup lz(s)||
—T2585>
. (42)
V() = d*e® [T (x(s)) R f(2(s))
T
~af P T () R f(a(5)) s S () =(s)
id Va(zg) < / rrian © x(s —2?) S| x(s —27%) ds
< d?e [T (2 (1)) Ra f (2 (1)) R i (s = =3%)
t t ! T
- e%(t*d)/ fT(x(s))dsR4/ F(a(s))ds = [+ [ (s)Sn1(s) + 227 (s) S12(s — =)
— 3
t—d(t) t—d(t) 34) . 271 . - o
+ 227 (8)S132(s — T) +x(s— ?)52295(5 — ?)
In order to derive less conservative results,we add the Ti2 2715 2719
following inequalities with positive diagonal matrices M7, My +2a7 (s - ?)52333(3 - T) +al(s - 7)533
M =2f T (w(t)) My f (x(1)) + 227 () My (D1 + T2) f (2 (1)) x x(s — 27712)](13
— 22T ()01 M T2 (t)] > 0 (43)

(33) According to Lemma 3

=27 ot — () Maf ot — () + 207 (¢ — 7(0)Ma Vi) € 3 Ponae(S12) + Aen(S2) £ A1) (5

x (T + Do) flz(t — 7(t)) — 227 (t — 7(t)) L1 MaT'y b2 (519) + Ama(S13) + A (S22)]
xz(t—7(t)] >0 3 2,
(36) HI(S - 7)” 3[ max(S22) + )\max(523)
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+ Amax(S33)][[2(s) 12
S T2 [)\mxx(Sll) + 2An1xx(512) + 2AmLX(Sl3)

3
44
+ )\max(SQQ) + 2)\max(523) + )\max(Si’;B)] ( )
x sup x(s)|®
—712<s<0

T (1)d(t) <4[Amax(CTC) + ¥ [Amax (AT A) + Amax (BT B)]

+d272)‘max(DTD)} sup ||.l‘(8)||2
—T12<s<
7= s {hi | b1}
_ 272473 0
T12 3 LT
Vs(zo) < == 3 max(Rl)/ / @' (s)i(s)dsdf
—T2 0
7—1+27—2

it maX(RQ)/ 2ain /Og'cT( Vi (s)dsdf

7'12
max(RB)/TlJrlv/

< 7'172[T12(7'1 + 57'2)

s)dsdf

= 3 9 Amax(Rl)
@ N (o)
T12  T12(571 + T2) T
e 7)\111@( R /\Inax C C
12 M0t (R)] e (€T
+ 7 Amax(ATA) + Y Amax (BTB)] sup [z (s)]|
—7,<s<
(45)
d3 2
Vi(20) < S~ Amax(Ra) sup_ [Jo(s)]* (46)

2

According to (33)—(38), we can get the following inequalities:

V(z(0) <w _sup ()11

47)

where

W = )\maX(P) + 2)‘maX(F2 - 1)( maX( ) + )‘maX(A))

+ (T2 (@) F A (@2) + 270000 (@5)
+ Tlgi/\max(@ﬂ + T2 Amax (@5) + 727 Amax (Qs)
75 Ponax(511) F Mx(S12) + A (S13)]| ()]
+ T;; [Amax(512) + Amax (513) + Amax (S22)]

X ||‘T(S - 7)”2 3[ max(S22) + )\max(s23) + Amax(SSB)]

X ||.TJ(S)||2 + 7—1?2[>\mdx(sll) + 2>\de(512) + 2>\de(513)

+ /\max(SZ2) + 2/\max(S23) + )\max(SSQS)]
2[712(7'1-1-57'2) T12(7T1 + 72)

3 9 )\max(Rl) + 3 >\Inax(R2)
n MRy (R e (CTC)
2 T 2 T d*y?
+ Y )\max(A A) + Y )\max(B B)] + T)\max(R4)
(48)
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On the other hand, we have

V(@(t)) = e Ain (P)[|2(t)|? (49)
Therefore
el < 4[5 =g ™ _swp_ [l2(s)] (50)

Thus,according to definitionl the system (16) is exponentially
stable, the proof is completed. |
Theorem 2.For given scalars I'y = diag(v; ,v5 ,---5%, ) »
Ty = diag(y,vg s 7), d >0, u < 1,79 = 79 — 71, the
system(9) is globally exponentially stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices P, Q;(i = 1,2,...,6),R;(i = 1,2,3,4),
S11 S12 Si3
S=|x S S
* * 533

positive diagonal matrices M;, Mo,

A1 = diag(/\l, )\2, ey An), AQ = diag(él, 52, ey 5n) , a
scalar € > 0,such that the following LMIs hold:

E+eli YT +e7 15T, < 0.

F+eTi Y] +e 1757, <0. (51)

G+ 8T1T{ + 5_1TgT2 < 0.
where

Ty = [Ty, (A — A2)W +E,,0,0,0,0,0,Z]"
Tl = [7E07EaaEb:0707070707Ed]
T, = PW — (ToAy — DA )W + =

T122

E:f(R1+R2+R3)W><?

Proof: In Theorem 1, we replace C, A, B, D with C +
AC(t), A+ AA(t), B+ AB(t),D + AD(t), then adding to
Lemma4, we can get the results. This completes the proof. B
Colloary 1.For given scalars I'y = diag(vyy 75 5>V ) »
Ty = diag(vy s s, ), d >0, u <1, 79 = 79 — 74, the
system(16) is globally exponential stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices P, Q;(i = 2,...,5), R;(1 = 1,2,3,4),

S11 Sz Sis
S = | % Sa Sas| positive diagonal matrices M, Mo,
* *  S33
A1 = diag()\l, )\2, ey )\n), A2 = diag(&l, 52, ey 6n) such
that the following LMIs hold:
-611 €12 €13 0 0 0 0 0 619-
* €99 €93 0 0 0 0 0 €929
* * €33 €34 0 0 0 0 €39
* * * €44 €45 €46 0 0 0
FE = * * * * €55 €56 (54 0 0 S 0
* * * * * €66 €67 €68 0
* * * * * err  ers 0
* * * * * x* egg O
* * * * * * ¥ egg
- (52)
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€11 €12 €13 0 0 0 0 0 €19
* €29 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* ox ok fa 0 fie far 0 0
F = * * * * €55 f56 €57 0 0 S 0
* * * * * €66 f67 €68 0
* * * * * frr fis O
* * * * * * egg 0
* * * * * * *  €egg
) (53
_611 €12 €13 0 0 0 0 0 619-
* €22 €23 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* ok ok gyg 0 0 gar gz O
G=| * * * * es5 fs6 esr O 0] <0
* ok * * *  ges Jfer ees O
* * * * * x  frr e O
* * * * * * egg O
* * * * * * ¥ egg
) - (54)

€11 = 2kP — PC — CP — 4kF1A1
+ (%)QC(Rl + Ry + R3)C —

5

+ 3 Qi + 4kT2Ay — 2T MTy
=1

€12 = PA -+ 2]€A1 — (Al — AQ)C -+ (F2A2 — FlAl)A
— (52)V°C(Ry + Ry + Ry) A+ My(Ty +T3) — 2k,

—C(T2Ay —T1Ay)
(F2A2 — FlAl)C

e13 = PB + (TyAs — T1A1)B — (T;f) C(Ry + R + R3)B

e19 = PD + (TaAy — T1A;)D — (T;) C(Ry + Ry + R3)D

ean = (A — Ap)A — 20, + (%)QAT(Rl + Ry + Ry)A
+AT(A, — Ay)

eos = (A1 — As)B + (712) AT(Ry + Ry + R3)B

€29 = (Ar — Ao)D + (712) AT(Ry + Ry + Rs)D

€33 = (7:1))2) BT(R, + Ry + R3)B — 2M,

egq = Mo(T'y +T'g)

es0 = (222BT(Ry + Ry + R3)D

3

4y = —2e~ 252 Ry oD Moy
ess = e 2F S R3,e46 = €72kw33
€55 = _67216@ e 2km1 Qs + o2k Sii
es6 = € KT Sy 57 = e 2T G5
€66 — —e kT 271+T2 (Q3 + S11+ R3 + RQ)

+ e~ 2k (522 — Rl)
eer = _6—21@2’1“2 Sis+ e —2j 272t Ry + e~ 27185,
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—2k —2k 22t
err=e 1S3 —e 5 (Ra+ Qa)
_of2TitT2 2T1+72 _ o271t
—e Sag,e78 = —¢ 3 Sog
_op2TitTa _ ok
€gg = —¢ 37 S33 —e "(Qs5 + Ry)

egp = (B)QDT(R1 4 Ro+ Rs)D — e~ %R,

_2k 27’1+ﬂ'2

Jaa = —2e Ry — 2T'; M,Ty
ok 271+72 _op2TitTo
fae = Ry, far = 3 Ry,
_ _ 271 +79
f56 _ 2k'rlS Te 2k =13 R3
—2p 0tz —2k
fer = —e S1a + e “"T1 Sy
2m1 47
frs=—e T3 Sy +e Ry
_ _ 279+7q _
err =€ 2k715«33 —e 2k —25 (R2 + Q4) —e 2k72R1
944 = —2672kT2R1 — 2F1M2F2

gar = 2¢ 2Ry, gus = 2¢ P2 Ry
27147
THRTET(Qs + S+ Ro) +

966 = — 6_2kT1 522

Proof: Choosing @1 = 0,Q¢ = 0 in Theorem 1,one can

easily obtain this result. |
Remark 1. This paper not only divides the delay
interval[r;, 73] into [r, %E2] and [2E22 7)but also

divides [r1, 75] into [ry, 27ET2], [204T2 TE272] [MA272 )]

.Each segments has a different Lyapunov matrix,which have
potential to yield less conservative results.

Remark 2.Unlike other papers [17-18],which 0 < 7(¢) < T,
in this paper we let 71 < 7(t) < 79, consider 7 # 0. Thus our
results can obtain better for exponential stability criteria.

IV. NUMERICAL EXAMPLES

In this section, we provide the simulation of examples to
illustrate the effectiveness of our method.
Example 1. Consider the system (16) with the following
parameters:

23 0 0] 09 —15 0.1
C=|0 34 0|,A=1]-12 01 0.2},
[0 0 25] 02 03 08
(0.8 0.6 0.2] 0.3 0.2 0.1
B=105 0.7 01|,D=101 0.2 0.1

02 0.1 0.5] 0.1 0.1 0.2

I'y = diag(0,0,0), T'y = diag(0.2,0.2,0.2)

For the case of o = d, k = 0,71 = 0, the upper bounds of
7 for unknown u is derived by Corollary 1 in our paper and
the results are listed in Table I. This example shows that the
stability condition in this paper gives much less conservative
results.

For the case of d = 0.2, k = 2,77 = 0.5, and various u,
the maximum 75 are shown in Table II.

Example2. Consider the system (16) with the following
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TABLE 1
ALLOWABLE UPPER BOUND OF T FOR EXAMPLE 1

Method Maximum of allowable 7
[13] 1.833
[14] 3.597
[15] 5.068
[16] 6.938
[17] 9.338
[18] 11.588
corollary 1 13.459
TABLE 11

ALLOWABLE UPPER BOUND OF 7 FOR EXAMPLE 1

conditions Theorem 1

71 =05,d=0.2,,k=2,u=0.5 6.3

71 =05d=02,k=2u=0.8 6.0

71 =05,d=02,k=2,u=0.9 5.8
TABLE III

ALLOWABLE UPPER BOUND OF k£ FOR EXAMPLE 2
conditions [15] [16] [17] Theorem 1

70 =05,d=02,u=0 0.46 0.58 0.67 3.60

T2 =0.5,d =0.2,u = 0.5 0.21 0.35 0.45 3.59
TABLE IV

ALLOWABLE UPPER BOUND OF 75 FOR EXAMPLE 3

T1 0.3 0.5 0.7 1.0 2.0

Theorem 15.200 15.111 15.000 14.670 14.668
parametersz

(6 0 0 1.2 —0.8 0.6
C=10 5 0|,A=1]05 =15 0.7,

0 0 7 —-0.8 —-1.2 —-14

(—1.4 09 05 1.8 0.7 —-0.8
B=|-06 12 08|,D=]06 14 1.0

| 05 —0.7 11 —04 —-06 1.2

I'y = diag(—1.2,0,—-2.4), I'y = diag(0,1.4,0)

For various 71,d and w, the maximum of the exponential
convergence rate index k calculated by Theorem 1 in this paper
are listed in Table III.

Example 3. Consider the system (16) with the following

parameters:
3.99 0 1188 0.09
¢= [ 0 2.99] A= [0.09 1.188}
0.009 0.14 045 —0.2
5= [0.05 0.09] D= {0.3 0.42}

I'y = diag(0,0), I'y = diag(1,1)

The corresponding upper of 75 for various 7; by Theorem 1
(letting £k = 1,u = 0.8,d = 0.3) in Table IV.
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