
 

 

  
Abstract—This paper deals with modeling and parameter 

identification of nonlinear systems described by Hammerstein model 
having Piecewise nonlinear characteristics such as Dead-zone 
nonlinearity characteristic. The simultaneous use of both an easy 
decomposition technique and the triangular basis functions leads to a 
particular form of Hammerstein model. The approximation by using  
Triangular basis functions for the description of the static nonlinear 
block conducts to a linear regressor model, so that least squares 
techniques can be used for the parameter estimation. Singular Values 
Decomposition (SVD) technique has been applied to separate the 
coupled parameters. The proposed approach has been efficiently 
tested on academic examples of simulation.. 
 

Keywords—Identification, Hammerstein model, Piecewise 
nonlinear characteristic, Dead-zone nonlinearity, Triangular basis 
functions, Singular Values Decomposition 

I. INTRODUCTION 
ODELING and identification of nonlinear dynamic 
systems constitute an essential stage in practical control 

design. Indeed, several researchers published interesting 
works about this theme and many classes of nonlinear systems 
have been studied in the literature. One of the studied classes 
is the block-oriented nonlinear systems having piecewise 
static nonlinearities [1], [2], [3], [4], [5], [6]. Among these 
models, we can cite particularly Hammerstein model, Wiener 
model and Hammerstein-Wiener model. Hammerstein models 
with piecewise nonlinearities are frequently used in nonlinear 
systems control. We find such nonlinearities in some actuator 
families [7]. Many methods of identifications operating on-
line have been proposed for this kind of nonlinear models [8], 
[5]. 

The recursive techniques of identification are extensively 
developed. They are well adapted particularly to a great 
number of applications, in real time. In addition, they can be 
easily combined with the control strategies operating on-line 
such as the adaptive control algorithms [4]. They can also be 
applied to systems with time-varying parameters or 
Hammerstein nonlinear systems with different forms of 
discontinuities [1], [3], [4], [10]. In these approaches, a 
parameter redundancy was considered in the chosen form of 
the appropriate Hammerstein model description, leading to a 
significant increase of the number of estimated parameters. 
Other forms of Hammerstein models, which can be provided 
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by a decomposition based on the "Key term" principle, are 
proposed in the literature. In this case, the static nonlinearity is 
represented by the piecewise nonlinearities [11], [12], [13], 
[14]. The considered decomposition leads to the form of a 
model where the parameters of the linear and nonlinear blocks 
are separated. It results that the obtained model is linear in 
parameters and the RLS algorithm can be well applied [12]. 
Other shapes of Hammerstein models using various static 
nonlinearities (dead zone, saturation nonlinearity, preload 
nonlinearity,…) and the key term principle have been 
proposed. In this situation, the output of the model is 
considered as an output of Multi-Inputs Single Output (MISO) 
system [11]. This Hammerstein model contains an internal 
variable which is not available to the measure, what does not 
allow the parameters estimation directly by the ordinary 
method of least squares. For this reason, it is necessary to 
estimate the internal variable to build the observations vector. 
This estimation requires of manipulating a great number of 
iterations to ensure the convergence of the least squares 
algorithm [1], [11], [10], [6]. 

 In this paper, we propose an approach which consists in 
building Hammerstein model having Piecewise nonlinear 
characteristics such as Dead-zone nonlinearity characteristic. 
To describe the nonlinear system, we use the simultaneous use 
of both an easy decomposition technique and the triangular 
basis functions leads to a particular form of Hammerstein 
model. This model is then expressed in a parametric form and 
regression analysis is used for improving the relationship 
between input and output signals. To estimate the parameters, 
the RLS algorithm will be applied and SVD decomposition 
will be considered to separate the coupled parameters. The 
proposed approach allows to well describe the nonlinear 
dynamic system and to avoid obtaining a model with a great 
number of parameters.    

The paper is organized as follows: in the second section we 
give a description of the Hammerstein model with static 
nonlinearity known as dead zone nonlinearity. The transfer 
function of the linear dynamic block is given. The third and 
the fourth section are devoted to the parameters estimation 
algorithm using triangular basis functions. In the fifth section, 
we study in simulation the proposed estimation approach on 
academic examples. The simulation results are firstly carried 
out; secondly they are commented and discussed. A 
conclusion on the main works developed in this study ends the 
paper.  
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II. HAMMERSTEIN MODEL WITH DEAD-ZONE NONLINEARITY  

A. Description of block oriented nonlinear system 
Hammerstein model is one of the most easy and known of 

the family of blocks oriented nonlinear systems [15]. The 
Hammerstein model is given by the cascade connection of a 
static nonlinearity block N(.) followed by a linear dynamic 
system defined by a transfer function T(q) shown in Fig 1. In 
this paper, a special form of mathematical Hammerstein model 
containing internal variable which is the output of the static 
nonlinear block is developed by introducing a general 
decomposition of the nonlinear function. The static 
nonlinearity is considered as dead zone nonlinearity 
characteristic which is approximated by Triangular basis 
functions.  

We consider plants having the Hammerstein structure with 
ARX linear model shown in Fig 1. 

 
  
 
 
 
 
 

Fig. 1 Hammerstein model 
 

The signals u(k), y(k) and  y1(k) are respectively the model 
input, noisy model output and model output without noise, 
and the function h(k), describing the nonlinear effects. The 
signal h(k) is a nonavailable internal sequence related to the 
input only, is defined by:  

( ) ( ( ))=h k  N u k                                                                  (1) 
The transfer function T(k) of the linear block is described by 

1( )( )
1( )

−
=

−
B qT q
A q

                                                                    (2) 

where q-1 is the backward shift operator, and 
1 1( ) 1 ...1

−− −= + + +  A

A

nA q a q a qn                                     (3) 

1 1 _ 2( ) ...1 2
−− −= + + + B

B

nB q  b q b q b q  n                             (4) 

The noise of measure in the output v(k) defined by 
1( ) ( )

1( )
=

−
v k e k

A q
                                                              (5) 

where e(k) is a bounded measurement disturbance which is 
supposed to be a zero-mean, white noise sequence. 

B. Parameterization of static nonlinearity block  
The function N(.), describing the nonlinear effects, is 

supposed to be memoryless within some given finite interval 
[umin, umax ]. The signal h(k) is a nonavailable internal 
sequence related to the input only. Then we introduce a 
general decomposition of the nonlinear function such as 

( ) ( ) ( )
1

p TN u u uj j
j

μ η μ η≅ =∑
=

 (6)                   

where u Є [umin, umax ], [ ... ]1
T

pμ μ μ= is a parameter vector, 

( ) [ ( )... ( )]1
Tu u upη η η=  and (.)jη , j = 1,… p, represents the 

jth basis function (.)jη . The basis functions is defined as 

follows 
( ) ( ( ))u uj j jη ξ α γ= −                                                          (7) 

where jα  and jγ  denote the dilation and translation 

parameters, respectively, and (.)ξ  represents a generator 
function which belongs to a large family of functions 
containing Gaussian functions, Generalized orthonormal basis 
function, triangular functions, trigonometric functions etc 
[18]. 

III. HAMMERSTEIN MODEL IDENTIFICATION 
The output of the nonlinear block y(k) is written in the 

following way: 
1 1( ) (1 ( )) ( ) ( ) ( ( )) ( )y k A q y k B q N u k e k− −= − + +                  (6) 

Substituting (3) and (4) into (6), we obtain: 
( ) ( 1) ... ( )1

( ( 1)) ... ( ( ) ( )1           
A A

B B

y k a y k a y k nn n
b N u k b N u k n e kn n

= − − − − −

+ − + + − +
        (7) 

In a matrix form, we can write the system output equation as 
follows 

( ) ( ) ( )θ ψ= +Ty k k e k                                                            (8) 
where θ  is the parameter vector given by 

[ ]   Ta bθ θ= where [ ... ]1 A

Ta a an= , [ ... ]1 B

Tb b bn= , 

[ ... ]1
T

pμ μ μ=  and ( )Tvec bbθ μ=  with vec(.) is an operator 

which stacks the columns of a matrix into a vector. The 
observation vector ( )ψ k  is described by: 
 

( )
( )

( )

ky
k

k

ψ
ψ

ψη

−⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                 (9) 

 

where 

( 1)
      .

( )       .
      .

( )

y k

ky

y k nA

ψ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 

   ( ( 1))
      .

( )       .
      .

( ( ))

u k

k

u k nB

η

ψη

η

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
The estimated value of the parameter vector θ  can be 
obtained by minimizing the following criterion. 

ˆ arg min 2Yθ ψθ= −                                                          (10) 

  y(k) u(k) 

v(k) 
+ 

+ 

h(k) 
T(q) 

y1(k) 
N(•) 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:3, 2011 

343International Scholarly and Scientific Research & Innovation 5(3) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
3,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
53

63
.p

df



 

 

where 

( )
    .
    .
    .
  ( )

y nA

Y

y r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

( )
    .
    .
    .

  ( )

T nA

T r

ψ

ψ

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in considering 

input-output measurements pairs [u(k); y(k)], k = l,…,r where 
r >nA. 
To estimate the parameter vector θ , the Least Squares 
Estimation  method and the Singular Value Decomposition 
(SVD) [3], [16], [17], is used by writing :   

1ˆ ˆˆ ( ( )) 1 1
T Tb vec u vbμ θ−=                                                     (12) 

where (.)maxσ is the maximum singular value of 1 ˆ( )vec bθ− , 

u1 is the  first left eigenvector of 1 ˆ( )vec bθ− , and v1 is the first 

right eigenvector of 1 ˆ( )vec bθ− . Using (12), μ̂ and b̂  can be 
given by: 

1 ˆˆ ( ( ))max 1vec ubμ βσ θ−=                                                   (13) 

1ˆ 1b v
β

=                                                                              (14) 

where β  is an arbitrary parameter. 
The nonlinear function N(.) can be recovered from the 
estimate 

ˆˆ ( ( )) ( )N u k kbθ ψη=                                                             (15) 

IV. APPROXIMATION BY TRIANGULAR BASIS FUNCTION   
To linearly parameterize the nonlinear function N(.) we use 

the triangular basis functions given in Fig. 2.  For simplicity, 
the input interval [umin, umax] is evenly divided into p partitions 
separated by a set of points {u1…up}, such that umin = u1 < u2 < 
… <up = umax with 1u uj jΔ = − − . The unit triangular 

generator function (.)ξ is defined as 

1 1 0
( ) 1 0 1

0

      
         

             

z if z
z z if z

otherwise
ξ

+ − ≤ <⎧
⎪= − ≤ <⎨
⎪
⎩

                                            (16) 

Now, we write 1u jjγ = + Δ , 1jα = Δ and 1u jjγ = + Δ  

 
 
 

 
 
 
 

Fig. 2 Triangular basis function 

V. SIMULATION RESULTS 
The proposed method for the parameter estimation of 

nonlinear dynamic system with discontinuous nonlinearities 

using the Hammerstein model was implemented and tested by 
means of MATLAB packages. The estimation of the model 
parameters (those of linear and nonlinear blocks) were carried 
out on the basis of input and output records. To illustrate the 
feasibility of the proposed identification method, the 
following example shows the parameters estimation process 
for the linear dynamic block, which is given by the following 
recursive equation: 

( ) 1.6961 ( 1) 0.8651 ( 2)
0.5895 ( 1) 0.4701 ( 2)                    

y k y k y k
h k h k

= − − − +
− + −

                (17) 

The discontinuous nonlinearity is described by the 
following equation: 

0.28 0.28
( ) 0 0.28 0.28

0.28 0.28

          
            

            

u u
N u u

u u

+ ≤ −⎧
⎪= − < <⎨
⎪ − ≥⎩

                                (18) 

We choose input signal as a zero-mean, white noise sequence 
uniformly distributed between -1 and 1. The measurement 
noise was a zero-mean white noise Gaussian sequence. The 
Signal to Noise Ratio (the square root of the ratio of output 
and noise variances) was (SNR =25 and SNR=50). The SNR 
is defined as  

2 ( )
0

2( )
0

r
y k

kSNR
r

v k
k

∑
==

∑
=

                                                         (19) 

To taste the estimation quality of the model, the mean square 
error (MSE) is used. Indeed, the MSE values for the nonlinear 
identification method were calculated for two values of SNR, 
and the results are tabulated in table 2. The MSE is defined as 

1 2ˆ( ( ) ( ))
1

N
MSE y k y k

N k
= −∑

=
                                            (20) 

where ˆ( )y k  is the predicted output and N is the number of 
samples used in the identification process. 

The evolution curves, for the output, the estimate values 
and the static nonlinearity (for SNR equal to 25) are given 
respectively in Figure 3, Figure 4 and Figure 5.  

 
Fig. 3 Parameter estimates 
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The previous curves of estimates parameters Fig. 3 show a 
good convergence of the algorithm. Indeed, the estimate value 
converges to the true value quickly. The statistical average, 
for the estimate parameters of the last twenty samples with 
various values of SNR (25 and 50) is given in Table1. We 
note if the values of SNR increase, the estimates converge 
more towards the true values. Moreover, the mean square 
errors of proposed method given in Table 1, show that the 
quality of estimation is all better as the signal to noise ration 
(SNR) increases. It can be seen by comparing the estimate 
dead zone nonlinearity (red) and the real one (blue) Fig. 5 that 
the estimate curve coincides well with the real one. 
 
 

 
 

Fig. 4 Real system response (blue) and identified model response 
(red) 

 
 

 
 

Fig. 5 The static nonlinearity function: actual N(u) (blue) 
 and estimated N(u) (red) 

 
 
 
 
 
 
 
 

 

 

VI. CONCLUSION 
In this paper, a new approach, in modeling and parameters 

identification of Hammerstein models with piecewise 
nonlinear characteristic. The contribution, in this work, has 
been dedicated to a new description of Hammerstein model by 
the introduction of simultaneous use of both an easy 
decomposition technique and a triangular basis functions to 
modeling the static nonlinear function. This method allow to 
parameterize the Hammerstein model leading to a linear 
regressed form so that least square techniques have been 
successfully used to estimate an oversized parameter matrix. 
Then, by recurring to SVD, optimal estimates of the parameter 
matrices characterizing the linear and nonlinear parts have 
been determined. The included example of the identification 
process has shown the feasibility and good convergence 
properties of the proposed technique. The presented method 
can be easily extended to Hammerstein systems with other 
types of nonlinearities, e.g., preload nonlinearity, saturation 
nonlinearity, ...  
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