Search results for: Boundary scan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 825

Search results for: Boundary scan

705 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process

Authors: Abdelali Joumad, Abdelaziz Nasroallah

Abstract:

In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.

Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
704 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

Authors: B. I. Yun

Abstract:

A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.

Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
703 Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
702 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
701 Effect of Geometrical Parameters on Natural Frequencies of FGM Cylindrical shell with Holes Under Various Boundary Conditions

Authors: Mostafa Ghayour, Mohammad Sadegh Golabi

Abstract:

In the recent years, functionally gradient materials (FGMs) have gained considerable attention in the high temperature environment applications. In this paper, free vibration of thin functionally graded cylindrical shell with hole composed of stainless steel and zirconia is studied. The mechanical properties vary smoothly and continuously from one surface to the other according to a volume fraction power-law distribution. The Influence of shell geometrical parameters, variations of volume fractions and boundary conditions on natural frequency is considered. The equations of motion are based on strains-displacement relations from Love-s shell theory and Rayleigh method. The results have been obtained for natural frequencies of cylindrical shell with holes for different shape, number and location in this paper.

Keywords: Functionally gradient material, Vibration, various boundary conditions, cylindrical shells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
700 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel

Authors: Huei Chu Weng, Chien-Hung Liu

Abstract:

This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.

Keywords: Microfluidics, forced convection, gas rarefaction, second-order boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
699 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand

Abstract:

The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.

Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
698 A Comparison of Inflow Generation Methods for Large-Eddy Simulation

Authors: Francois T. Pronk, Steven J. Hulshoff

Abstract:

A study of various turbulent inflow generation methods was performed to compare their relative effectiveness for LES computations of turbulent boundary layers. This study confirmed the quality of the turbulent information produced by the family of recycling and rescaling methods which take information from within the computational domain. Furthermore, more general inflow methods also proved applicable to such simulations, with a precursor-like inflow and a random inflow augmented with forcing planes showing promising results.

Keywords: Boundary layer, Flat plate, Inflow modeling, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
697 Vibration of Functionally Graded Cylindrical Shells under Effects Clamped-Clamped Boundary Conditions

Authors: M.R.Alinaghizadehand, M.R.Isvandzibaei

Abstract:

Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is important. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clampedclamped boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
696 Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow in the axisymmetric nozzle taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier- Stokes equations is realized by using the finite volume method to determine the supersonic flow parameters at the exit of convergingdiverging nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level is selected to ensure numerical convergence. The effect of the boundary layer thickness is significant at the exit of the nozzle. The best solution is obtained with using a very fine grid, especially near the wall, where we have a strong variation of velocity, temperature and shear stress. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, nozzle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
695 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei

Abstract:

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
694 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
693 ‘Memory Mate’ as Boundary Object in Cancer Treatment for Patients with Dementia

Authors: Rachel Hurdley, Jane Hopkinson

Abstract:

This article is based on observation of a cross-disciplinary, cross-institutional team that worked on an intervention called ‘Memory Mate’ for use in a UK Cancer Centre. This aimed to improve treatment outcomes for patients who had comorbid dementia or other memory impairment. Comorbid patients present ambiguous, spoiled identities, problematising the boundaries of health specialisms and frames of understanding. Memory Mate is theorised as a boundary object facilitating service transformation by changing relations between oncology and mental health care practice. It crosses the boundaries between oncology and mental health. Its introduction signifies an important step in reconfiguring relations between the specialisms. As a boundary object, it contains parallel, even contesting worlds, with potential to enable an eventual synthesis of the double stigma of cancer and dementia. Memory Mate comprises physical things, such as an animation, but its principal value is in the interaction it initiates across disciplines and services. It supports evolution of practices to address a newly emergent challenge for health service provision, namely the cancer patient with comorbid dementia/cognitive impairment. Getting clinicians from different disciplines working together on a practical solution generates a dialogue that can shift professional identity and change the culture of practice.

Keywords: Boundary object, cancer, dementia, interdisciplinary teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440
692 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: Boundary conditions, buckling, non-local, the differential transform method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
691 Atomic Force Microscopy (AFM)Topographical Surface Characterization of Multilayer-Coated and Uncoated Carbide Inserts

Authors: Samy E. Oraby, Ayman M. Alaskari

Abstract:

In recent years, scanning probe atomic force microscopy SPM AFM has gained acceptance over a wide spectrum of research and science applications. Most fields focuses on physical, chemical, biological while less attention is devoted to manufacturing and machining aspects. The purpose of the current study is to assess the possible implementation of the SPM AFM features and its NanoScope software in general machining applications with special attention to the tribological aspects of cutting tool. The surface morphology of coated and uncoated as-received carbide inserts is examined, analyzed, and characterized through the determination of the appropriate scanning setting, the suitable data type imaging techniques and the most representative data analysis parameters using the MultiMode SPM AFM in contact mode. The NanoScope operating software is used to capture realtime three data types images: “Height", “Deflection" and “Friction". Three scan sizes are independently performed: 2, 6, and 12 μm with a 2.5 μm vertical range (Z). Offline mode analysis includes the determination of three functional topographical parameters: surface “Roughness", power spectral density “PSD" and “Section". The 12 μm scan size in association with “Height" imaging is found efficient to capture every tiny features and tribological aspects of the examined surface. Also, “Friction" analysis is found to produce a comprehensive explanation about the lateral characteristics of the scanned surface. Configuration of many surface defects and drawbacks has been precisely detected and analyzed.

Keywords: SPM AFM contact mode, carbide inserts, scan size, surface defects, surface roughness, PSD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7228
690 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
689 Numerical Solution of Infinite Boundary Integral Equation by Using Galerkin Method with Laguerre Polynomials

Authors: N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, M. Hasan

Abstract:

In this paper the exact solution of infinite boundary integral equation (IBIE) of the second kind with degenerate kernel is presented. Moreover Galerkin method with Laguerre polynomial is applied to get the approximate solution of IBIE. Numerical examples are given to show the validity of the method presented.

Keywords: Approximation, Galerkin method, Integral equations, Laguerre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
688 An Asymptotic Formula for Pricing an American Exchange Option

Authors: Hsuan-Ku Liu

Abstract:

In this paper, the American exchange option (AEO) valuation problem is modelled as a free boundary problem. The critical stock price for an AEO is satisfied an integral equation implicitly. When the remaining time is large enough, an asymptotic formula is provided for pricing an AEO. The numerical results reveal that our asymptotic pricing formula is robust and accurate for the long-term AEO.

Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
687 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method

Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.

Abstract:

The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.

Keywords: Acoustic radiation, boundary element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
686 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
685 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System

Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh

Abstract:

A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.

Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
684 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
683 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: Boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
682 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
681 The Urban Development Boundary as a Planning Tool for Sustainable Urban Form: The South African Situation

Authors: E. J. Cilliers

Abstract:

It is the living conditions in the cities that determine the future of our livelihood. “To change life, we must first change space"- Henri Lefebvre. Sustainable development is a utopian aspiration for South African cities (especially the case study of the Gauteng City Region), which are currently characterized by unplanned growth and increasing urban sprawl. While the reasons for poor environmental quality and living conditions are undoubtedly diverse and complex, having political, economical and social dimensions, it is argued that the prevailing approach to layout planning in South Africa is part of the problem. This article seeks a solution to the problem of sustainability, from a spatial planning perspective. The spatial planning tool, the urban development boundary, is introduced as the concept that will ensure empty talk being translated into a sustainable vision. The urban development boundary is a spatial planning tool that can be used and implemented to direct urban growth towards a more sustainable form. The urban development boundary aims to ensure planned urban areas, in contrast to the current unplanned areas characterized by urban sprawl and insufficient infrastructure. However, the success of the urban development boundary concept is subject to effective implementation measures, as well as adequate and efficient management. The concept of sustainable development can function as a driving force underlying societal change and transformation, but the interface between spatial planning and environmental management needs to be established (as this is the core aspects underlying sustainable development), and authorities needs to understand and implement this interface consecutively. This interface can, however, realize in terms of the objectives of the planning tool – the urban development boundary. The case study, the Gauteng City Region, is depicted as a site of economic growth and innovation, but there is a lack of good urban and regional governance, impacting on the design (layout) and function of urban areas and land use, as current authorities make uninformed decisions in terms of development applications, leading to unsustainable urban forms and unsustainable nodes. Place and space concepts are thus critical matters applicable to planning of the Gauteng City Region. The urban development boundary are thus explored as a planning tool to guide decision-making, and create a sustainable urban form, leading to better environmental and living conditions, and continuous sustainability.

Keywords: Urban planning, sustainable urban form, urbandevelopment boundary, planning tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
680 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type

Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan

Abstract:

In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.

Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
679 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise

Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov

Abstract:

Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectional coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectional.

Keywords: Chaotic oscillators, phase synchronization, noise, intermittency of intermittencies, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
678 A Retrospective of High-Lift Device Technology

Authors: Andrea Dal Monte, Marco Raciti Castelli, Ernesto Benini

Abstract:

The present paper deals with the most adopted technical solutions for the enhancement of the lift force of a wing. In fact, during several flight conditions (such as take off and landing), the lift force needs to be dramatically enhanced. Both trailing edge devices (such as flaps) and leading edge ones (such as slats) are described. Finally, the most advanced aerodynamic solutions to avoid the separation of the boundary layer from aircraft wings at high angles of attack are reviewed.

Keywords: High lift devices, Trailing Edge devices, Leading Edge devices, Boundary Layer Control devices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3933
677 Thermal Stability Boundary of FG Panel under Aerodynamic Load

Authors: Sang-Lae Lee, Ji-Hwan Kim

Abstract:

In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.

Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
676 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318