
 

 

 
Abstract—This paper presents a study on the effect of 

second-order slip and jump on forced convection through a long 
isothermally heated or cooled planar microchannel. The fully 
developed solutions of thermal flow fields are analytically obtained on 
the basis of the second-order Maxwell-Burnett slip and Smoluchowski 
jump boundary conditions. Results reveal that the second-order term in 
the Karniadakis slip boundary condition is found to contribute a 
negative velocity slip and then to lead to a higher pressure drop as well 
as a higher fluid temperature for the heated-wall case or to a lower 
fluid temperature for the cooled-wall case. These findings are contrary 
to predictions made by the Deissler model. In addition, the role of 
second-order slip becomes more significant when the Knudsen 
number increases. 
 

Keywords—Microfluidics, forced convection, gas rarefaction, 
second-order boundary conditions. 

I. INTRODUCTION 

OWADAYS, Microelectromechanical Systems (MEMS) 
have developed a large number of microfluidic devices in 

physical, chemical, biological, medical, engineering, and 
energy-related fields. A fundamental understanding of physical 
aspects of microscale flow and heat transfer, which may deviate 
from those of macroscale flow and heat transfer, is required for 
the technological demands. 

Forced convection is often encountered in technically 
relevant microscale flow and heat transfer problems. Tunc & 
Bayazitoglu [1] analytically studied the fully developed forced 
convection in an isoflux rectangular microchannel by solving 
the Navier-Stokes and energy equations subject to the 
first-order Maxwell slip and local heat flux boundary 
conditions. Renksizbulut et al. [2] numerically investigated the 
developing forced convection in an isothermal rectangular 
microchannel by using the first-order Maxwell slip and 
Smoluchowski jump boundary conditions. Shojaeian & Dibaji 
[3] performed a numerical study of first-order fully developed 
forced convection in an isothermal triangular microchannel. 
Sadeghi & Saidi [4] examined the role of viscous dissipation in 
first-order fully developed forced convection by considering 
planar and annular microchannels with asymmetric wall heat 
fluxes. Recently, Çetin [5] modeled the fully developed forced 
convection in isoflux planar and circular microchannels based 
on the second-order Deissler and Karniadakis slip and local 
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heat flux boundary conditions. The Maxwell-Burnett slip law, 
however, has been shown to be an adequate way to model the 
second-order slip flow on the wall surfaces at the microscale 
[6]. Weng [7] analytically solved the Navier-Stokes and energy 
equations subject to the second-order Maxwell-Burnett slip and 
local heat flux boundary conditions for the fully developed 
forced convection in an isoflux heated or cooled planar 
microchannel. 

In this paper, a study on forced convection in a long 
isothermally heated or cooled planar microchannel is 
conducted. The Navier-Stokes and energy equations subject to 
the second-order Maxwell-Burnett slip and Smoluchowski 
jump boundary conditions are analytically solved for the fully 
developed flow. The calculated results are presented for air at 
the standard reference state with complete accommodation. 
The Deissler and Karniadakis slip models are then tested via the 
comparisons of predictions made by them with those obtain by 
the present slip model, so as to see how well these two slip 
models describe the flow and heat transfer behavior. 

 

 

Fig. 1 Diagram of thermal flow configuration and coordinate system 

II. PROBLEM DESCRIPTION 

Consider a long symmetrically heated or cooled stationary 
horizontal planar microchannel of length l  and width w , 
whose temperature is wT , as shown in Fig. 1. The rarefied gas 

flow in the microchannel originates from a reservoir at a 
reference state and terminates in a discharge area of lower 
pressure. In the system considered, the flow enters the channel 
with a uniform velocity iu . Let x  and y  denote the usual 

rectangular coordinates, let xu  and yu , denote the components 

of velocity in the x  and y  directions, let T  denote the 

temperature, and let the subscripts i and o denote the inlet and 
outlet values, respectively. For a sufficiently long 
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microchannel, we assume that a hydrodynamically and 
thermally fully developed flow prevails in the isothermal 
microchannel, obeying the limit: 0yu , 0/  xux , and 

0/  xT . The simplified field equations for steady 
two-dimensional incompressible flow of constant material 
properties with negligible gravitational field and internal heat 
generation are 
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where the subscript r denotes the reference-state values, p  is 

the pressure,   is the viscosity, and k  is the thermal 

conductivity. It should be noted that for a low-speed flow, the 
field equations could be simplified to incompressible ones. In 
addition, a small temperature difference between the wall and 
the reservoir supports the assumption of constant material 
properties [8]. 

The corresponding second-order Maxwell-Burnett slip and 
Smoluchowski jump boundary conditions [9] are 
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where m  and e  are the tangential momentum and thermal 

accommodation coefficients, respectively,   is the molecular 
mean free path, related to T  and p  by 
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Here R̂  is the specific gas constant,   is the ratio of the 

constant-pressure specific heat pc  to the constant-volume 

specific heat vc , and Pr is the Prandtl number. Note that the 

values of the second-order slip coefficient 2a  used by [5] are 

0.5, on the basis of the Karniadakis slip law [10], and 1.125 , 
on the basis of the Deissler slip law [11]. The comparisons of 
predictions made by the Karniadakis and Deissler slip laws 

with those obtain by the present slip law, which can describe 
the actual slip flow behavior, could be done to verify the 
validation of the two second-order boundary conditions. 

Equations (1)−(4) can be non-dimensionalized by using the 
following parameters: 
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where Re  is the Reynolds number, Br  is the Brinkman 
number, and Kn  is the Knudsen number. Here ccc Tul ,, , 

and cp  are the characteristic length, velocity, temperature, and 

pressure, respectively, and defined as: 
 

wlc  , ic uu  , rc TT  , 2
crc up  .       (8) 

 
Thus, the dimensionless field equations can be written as 
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and the corresponding dimensionless boundary conditions are 
given by 
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The velocity solution of (9) as a function of only Y  is 

possible only if the pressure gradient dXdP /  is a constant. In 
addition, a dimensionless conservation condition for the flow 
rate is given by 

 

1
1

0
UdY .            (13) 

 
Solving (9) and (10) subject to the boundary conditions (11) 
and (12) and flow-rate conservation condition (13) gives the 
following velocity, temperature, and pressure gradient 
solutions: 
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Fig. 2 Velocity distribution for different second-order slip models with 
0.1Kn   

III. RESULTS AND DISCUSSION 

Air is used in many engineering application fields. We now 
pay attention to the influence of second-order slip on the forced 
convection of air at the standard reference state ( C25orT  and 

atm1rp ) with complete accommodations ( 1m and 

1e ). The physical properties at this state can be found in [8]. 

The parametric analysis of this problem is performed over the 
range 5.0Br5.0  , and the chosen reference value of Kn  
(or w ) for the analysis is 0.1 (or m0.667  ). 

 

 

Fig. 3 Temperature distribution for different second-order slip models 
with 0.1Kn   

 
In Figs. 2–4, we investigate the influence of second-order 

slip on the velocity, temperature, and pressure gradient relative 
to the heated-wall case 0Br   and the cooled-wall case 

0Br   at a microscale level ( 1.0Kn  ). Fig. 2 illustrates the 
velocity profiles for the Maxwell-Burnett model ( 0.1452 a ), 

the Karniadakis model ( 5.02 a ), and the Deissler model (

1.1252 a ). Comparisons with the Karniadakis and Deissler 

solutions show that the Karniadakis model predicts a 
significantly relatively small velocity slip while the Deissler 
model predicts a significantly relatively large slip. However, it 
is seen that the Deissler model predicts a significantly relatively 
large velocity close to the center while the Deissler model 
predicts a significantly relatively small velocity. Fig. 3 
illustrates the temperature profiles for the three models. It 
should be noted that the viscous dissipation in a flowing fluid 
may lead to the rise of the temperature T , so that, from the 
figure, the dimensionless gas temperature   increases in a 
heated microchannel but decreases in a cooled microchannel. It 
is observed that the second-order term in the Karniadakis slip 
boundary condition causes more viscous dissipation but the 
second-order Deissler term causes less viscous dissipation. Fig. 
4 illustrates the variations of the pressure gradient dXdP /  
with the Knudsen number Kn . It is found that the second-order 
term in the slip boundary condition could play an important role 
in the slip flow regime ( 1.0Kn01.0  ). The Karniadakis 
model predicts relatively small pressure gradient values, while 
the Deissler model predicts relatively large values. The smaller 
(larger) pressure gradient means that the second-order slip flow 
displays a higher (lower) pressure drop. When the value of Kn  
increases; the effects of the second-order Karniadakis and 
Deissler slips increase. 
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Fig. 4 Pressure gradient versus Kn 

IV. CONCLUSIONS 

An analytical study on forced convection in a long heated or 
cooled planar microchannel with symmetric wall temperatures 
has been made by solving the Navier-Stokes and energy 
equations subject to the second-order Maxwell-Burnett slip and 
Smoluchowski jump boundary conditions. The fully developed 
solutions of velocity, temperature, and pressure gradient were 
presented for air at the standard reference state with complete 
accommodations. The Deissler and Karniadakis models were 
tested via the comparisons of predictions made by them with 
those obtain by the present model. For flow analysis, it was 
found that the second-order term in the Karniadakis slip 
boundary condition contributes a negative velocity slip and 
then leads to a higher pressure drop, while the Deissler slip 
model predicts a positive slip and then a lower drop. As for heat 
transfer analysis, it was observed that, for the heated-wall case, 
the second-order term in the Karniadakis slip boundary 
condition results in a higher temperature rise, while the Deissler 
slip model predicts a lower rise. The conclusions for the 
cooled-wall case were found to be contrary to the heated-wall 
predictions. The effects of the second-order Karniadakis and 
Deissler slips can be enhanced by increasing the Knudsen 
number. 
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