**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30248

##### MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

**Authors:**
Ibrahim Yakubu Seini,
Oluwole Daniel Makinde

**Abstract:**

**Keywords:**
Heat Transfer,
mass transfer,
MHD flow,
boundary layer,
surface slip,
chemical
reaction

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1108991

**References:**

[1] S. Y. Ibrahim and O.D. Makinde, Chemically Reacting MHD Boundary Layer Flow of Heat and Mass Transfer past a Low-Heat-Resistant Sheet moving vertically downwards, Sci. Res. & Essays, 6(22): 4762 – 4775 (2011).

[2] S.Y. Ibrahim and O.D. Makinde, Chemically Reacting MHD Boundary Layer Flow of Heat and Mass Transfer over a Moving Vertical Plate with Suction, Sci. Res. & Essays, 5(19): 2875 – 2882 (2010).

[3] K. Cao and J. Baker, Slip effects on mixed convective flow and heat transfer from a vertical plate”, Int. J. Heat Mass Transf., Vol. 52 Nos 15- 16, pp. 3829-3841 (2009).

[4] J. Zhu, L.C. Zheng and Z.G. Zhang, Analytical solution to stagnationpoint flow and heat transfer over a stretching sheet based on homotopy analysis”, Appl. Math. Mech. Engl. Ed., Vol. 30, No. 4, pp. 463-474 (2009).

[5] I. A. Hassanien and R. S. R. Gorla, Combined forced and free convection in stagnation flows of micropolar fluids over vertical nonisothermal surfaces”, Int. J. Eng. Sci., Vol. 28 No. 8, pp. 783-792 (1990).

[6] C. Y. Wang, Stagnation slip flow and heat transfer on a moving plate”, Chem. Eng. Sci., Vol. 61 No. 23, pp. 7668-7672 (2006).

[7] S. A. Kechil, I. Hashim, Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field, Physics Letters B, 372, 2258-2263 (2008).

[8] J. Zhu, L.C. Zheng and Z.G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet, Appl. Math. Mech. Vol. 31 No.4, pp.439-448 (2010).

[9] O. D. Makinde, Computational modeling of MHD unsteady flow and heat transfer over a flat plate with Navier slip and Newtonian heating”, Brazilian J. Chem. Eng., Vol.29 No.1, pp.159-166, (2012).

[10] O. D. Makinde and P. Sibanda, Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation, Inter. J. of Num. Methods for Heat & Fluid Flow, Vol. 21 No. 6, pp. 779-792, (2011).

[11] C. Michele and C. Fabrizio, Influence of a magnetic field on liquid metal free convection in an internally heated cubic enclosure, Int. J. of Num. Methods for Heat & Fluid Flow, Vol. 12 No. 6, pp. 687-715 (2002).

[12] S.R.G. Rama, A. Slaouti and H.S. Takhar, Mixed convection in non- Newtonian fluids along a vertical plate in porous media with surface mass transfer, Int. J. of Num. Methods for Heat and Fluid Flow, Vol. 7 No. 6, pp. 598-608 (1997).

[13] E. M. Arthur, Y. I. Seini and A. Seidu, On chemically reacting hydromagnetic flow over a flat surface in the presence of radiation with viscous dissipation and convective boundary conditions, American J. Appl. Maths; 2(5): 179-185 (2014).

[14] E. M. Arthur and Y. I. Seini, MHD thermal stagnation point-flow towards a stretching porous surface, Math. Theory and Modeling, Vol.4, No.5, 163 – 169 (2014).

[15] R. Imoro, E.M. Arthur, and Y.I. Seini, Heat and Mass Transfer over a Vertical Surface with Convective Boundary Conditions in the Presence of Viscous Dissipation and nth Order Chemical Reaction”. Int. J. Comp. & Appl. Maths, 9(2), 101-118 (2014).

[16] Y.I. Seini and O.D. Makinde, Boundary Layer Flow near Stagnation- Points on a Vertical Surface with Slip in the Presence of Transverse Magnetic Field, Int. J. Num. Methods and Fluid Flow; 24(3): 643 – 653 (2014).

[17] Y. Y. Lok, N. Amin and I. Pop, Unsteady mixed convection flow of a micropolar fluid near the stagnation-point on a vertical surface, Int. J. Therm. Sci., Vol. 45 No. 12, pp. 1149-1157 (2006).