Template-Based Object Detection through Partial Shape Matching and Boundary Verification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060842

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314

References:


[1] Y. Amit and A. Kong. Graphical templates for model registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):225- 236, 1996.
[2] N. Ansari and E. J. Delp. Partial shape recognition: A landmark-based approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):470-483, 1990.
[3] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondence. In IEEE Conference on Computer Vision and Pattern Recognition, 2005.
[4] G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849-865, 1988.
[5] D. Clemens and D. Jacobs. Space and time bounds on indexing 3d models from 2d images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10):1007-1017, 1991.
[6] P. David and D. DeMenthon. Object recognition in high clutter images using line features. In International Conference on Computer Vision, pages 1581-1588, 2005.
[7] P. F. Felzenszwalb. Representation and detection of deformable shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2):208-220, 2005.
[8] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Fourth Alvey Vision Conference, pages 147-151, 1988.
[9] F. Jurie and C. Schmid. Scale-invariant shape features for recognition of object categories. In IEEE Conference on Computer Vision and Pattern Recognition, pages II-90-96, 2004.
[10] P. D. Kovesi. Matlab functions for computer vision and image analysis. University of Western Australia. Available from: http://www.csse.uwa.edu.au/~pk/research/matlabfns/.
[11] D. Lowe. "distinctive image features from scale-invariant keypoints". International Journal of Computer Vision, 60(2):91-110, 2004.
[12] K. Mikolajczyk, A. Zisserman, and C. Schmid. Shape recognition with edge-based features. In British Machine Vision Converence, 2003.
[13] C. F. Olson and D. P. Huttenlocher. Automatic target recognition by matching oriented edge pixels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):103-113, 1997.
[14] E. G. M. Petrakis, A. Diplaros, and E. Milios. Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11):1501-1516, 2002.
[15] X. Ren, C. Fowlkes, and J. Malik. Mid-level cues improve boundary detection. Berkeley Technical Report 05-1382, CSD 2005.
[16] S. Sclaroff and L. Liu. Deformable shape detection and description via model-based region grouping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5):475-489, 2001.
[17] S. Wang, T. Kubota, J.M.Siskind, and J.Wang. Salient closed boundary extraction with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):546-561, 2005.