Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise
Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov
Abstract:
Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectional coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectional.Keywords: Chaotic oscillators, phase synchronization, noise, intermittency of intermittencies, control.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107361
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954References:
[1] P. Berge, Y. Pomeau, and C. Vidal, Order within Chaos, John Wiley and Sons, New York, 1984.
[2] C. M. Kim, G. Yim, J. Ryu, and Y. Park, “Characteristic relations of type III intermittency in an electronic circuit,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5317–5320, June 1998.
[3] J. L. Perez Velazquez and et al., “Type III intermittency in human partial epilepsy,” European Journal of Neuroscience, vol. 11, pp. 2571–2576, 1999.
[4] I. Z. Kiss and J. L. Hudson, “Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator,” Phys. Rev. E, vol. 64, no. 4, pp. 046215, 2001.
[5] S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, “Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems,” Phys. Rev. Lett., vol. 89, no. 19, pp. 194101, 2002.
[6] J. L. Cabrera and J. Milnor, “On-off intermittency in a human balancing task,” Phys. Rev. Lett., vol. 89, no. 15, pp. 158702, 2002.
[7] A. E. Hramov, A. A. Koronovskii, I. S. Midzyanovskaya, E. Sitnikova, and C. M. Rijn, “On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy,” Chaos, vol. 16, pp. 043111, 2006.
[8] E. Sitnikova, A. E. Hramov, V. V. Grubov, A. A. Ovchinnkov, and A. A. Koronovsky, “Onoff intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy,” Brain Research, vol. 1436, pp. 147–156, 2012.
[9] M. Dubois, M. Rubio, and P. Berg´e, “Experimental evidence of intermiasttencies associated with a subharmonic bifurcation,” Phys. Rev. Lett., vol. 51, pp. 1446–1449, 1983.
[10] J. F. Heagy, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E, vol. 49, no. 2, pp. 1140–1150, 1994.
[11] A. S. Pikovsky, G. V. Osipov, M. G. Rosenblum, M. Zaks, and J. Kurths, “Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization,” Phys. Rev. Lett., vol. 79, no. 1, pp. 47–50, 1997.
[12] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and S. Boccaletti, “Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization,” Phys. Rev. Lett., vol. 97, pp. 114101, 2006.
[13] A. E. Hramov, A. A. Koronovskii, O. I. Moskalenko, M. O. Zhuravlev, V. I. Ponomarenko, and M. D. Prokhorov, “Intermittency of intermittencies,” CHAOS, vol. 23, no. 3, pp. 033129, 2013.
[14] N. N. Nikitin, S. V. Pervachev, and V. D. Razevig, “About solution of stochastic diferential equations of follow-up systems,” Automation and telemechanics, vol. 4, pp. 133–137, 1975, in Russian.
[15] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag synchronization in coupled chaotic oscillators,” Phys. Rev. Lett., vol. 78, no. 22, pp. 4193–4196, 1997.
[16] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, “Two types of phase synchronization destruction,” Phys. Rev. E, vol. 75, no. 3, pp. 036205, 2007.
[17] B. B. Godfrey, “Oscillatory nonlinear electron flow in Pierce diode,” Phys. Fluids, vol. 30, pp. 1553, 1987.
[18] H. Matsumoto, H. Yokoyama, and D. Summers, “Computer simulations of the chaotic dynamics of the Pierce beam–plasma system,” Phys. Plasmas, vol. 3, no. 1, pp. 177, 1996.
[19] R. A. Filatov, A. E. Hramov, and A. A. Koronovskii, “Chaotic synchronization in coupled spatially extended beam-plasma systems,” Phys. Lett. A, vol. 358, pp. 301–308, 2006.
[20] P. J. Rouch, Computational fluid dynamics. Hermosa publishers, Albuquerque, 1976.
[21] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, and S. Boccaletti, “Generalized synchronization in mutually coupled oscillators and complex networks,” Phys. Rev. E, vol. 86, pp. 036216, 2012.
[22] A.E. Hramov, A.A. Koronovskii, “Detecting unstable periodic spatiotemporal states of spatial extended chaotic systems”, Europhysics Letters, vol. 80, pp. 10001, 2007.
[23] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, M. O. Zhuravlev, Yu. I. Levin, “Cooperation of deterministic and stochastic mechanisms resulting in the intermittent behavior”, Chaos, Solitons & Fractals, vol. 68, pp. 58-64, 2014.