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Abstract—In this paper, we present a framework to determine
Haar solutions of Bratu-type equations that are widely applicable
in fuel ignition of the combustion theory and heat transfer. The
method is proposed by applying Haar series for the highest derivatives
and integrate the series. Several examples are given to confirm the
efficiency and the accuracy of the proposed algorithm. The results
show that the proposed way is quite reasonable when compared to
exact solution.
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I. INTRODUCTION

This paper is concerned with boundary value problems and
an initial value problem of the Bratu-type. It is well known
that Bratu’s boundary value problem in one-dimensional planar
coordinates is of the form [1-5].

U ′′ + λeU = 0, 0 < x < 1, U (0) = U (1) = 0 (1)

The standard Bratu problem (1) was used to model a com-
bustion problem in a numerical slab. Bratu’s problem [6-9]
is also used in a large variety of applications such as the
fuel ignition model of the thermal combustion theory, the
model of the thermal reaction process, the Chandrasekhar
model of the expansion of the universe, questions in geometry
and relativity concerning the Chandrasekhar model, chemical
reaction theory, radiative heat transfer and nanotechnology
[10-14,15,17].

A substantial amount of research work has been directed
for the study of the Bratu problem [1-5]. Several numerical
techniques, such as the finite difference method, finite element
approximation, weighted residual method, and the shooting
method, have been implemented independently to handle the
Bratu model numerically. In addition, Boyd [2,3] employed
Chebyshev polynomial expansions and the Gegenbauer as
base functions. Muhammed I. Syam and Abdelrahem Hamdan
[16] presented the Laplace Adomain decomposition method
(LADM) for solving Bratu’s problem.

The exact solution to (1) is given in [1] and [2,3] and given
by

U (x) = −2ln

[
cosh

((
x− 1

2

)
θ
2

)
cosh

(
θ
4

)
]

(2)
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where θ satisfies

θ =
√

2λcosh
(
θ

4

)
(3)

The Bratu problem has zero, one or two solutions when
λ > λc, λ = λc, orλ < λc respectively, where the critical
value satisfies the equation

1 =
1
4

√
2λcsinh

(
θc

4

)
(4)

It was evaluated in [1,2,3,4,11,18] that the critical value is
given by

λc = 3.513830719 (5)

The main goal of this problem is to introduce a new Haar
wavelet treatment of two boundary value problems of Bratu-
type model, given by

U ′′ − π2eU = 0, 0 < x < 1, U (0) = U (1) = 0 (6)

and

U ′′ + π2e−U = 0, 0 < x < 1, U (0) = U (1) = 0 (7)

In addition, an initial value problem of the Bratu-type

U ′′ − 2eU = 0, 0 < x < 1, U (0) = U ′ (0) = 0 (8)

will be investigated. In this paper, our work stems mainly
from the Haar wavelet method. The Haar wavelet method,
which will exhibit several advantageous features:

i) Very high accuracy fast transformation and possibility
of implementation of fast algorithms compared with other
known methods. ii) The simplicity and small computation
costs, resulting from the sparsity of the transform matrices
and the small number of significant wavelet coefficients. iii)
The method is also very convenient for solving the boundary
value problems, since the boundary conditions are taken care
of automatically.

Haar wavelets (which are Daubechies of order 1) consists
of piecewise constant functions and are therefore the simplest
orthonormal wavelets with a compact support. The main
advantage of the Haar wavelet is that simplicity gets to some
extent lost. In solving ordinary differential equations by using
Haar wavelet related method, Chen and Hsiao [6] had derived
an operational matrix of integration based on Haar wavelet.
Lepik [12,13] had solved higher order as well as nonlinear
ODEs by using Haar wavelet method. The paper is organized
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in the following way. For completeness sake the Haar wavelet
method is presented in Section 2. Function approximation is
presented in Section 3. Procedure of Haar wavelet method for
ODE is presented in Section 4. The method of solution of the
first Bratu-type problem is proposed in Section 5. The method
of solution of the second Bratu-type problem is proposed in
Section 6. The method of solution of the initial value problem
of Bratu-type equation is proposed in Section 7. Concluding
remarks are given in Section 8.

II. HAAR WAVELET PRELIMINARIES

Haar wavelet is the simplest wavelet. Haar transform or
Haar wavelet transform has been used as an earliest example
for orthonormal wavelet transform with compact support. The
Haar wavelet transform is the first known wavelet and was
proposed in 1910 by Alfred Haar. They are step functions
(piecewise constant functions) on the real line that can take
only three values. Haar wavelets, like the well-known Walsh
functions (Rao 1983), form an orthogonal and complete set
of functions representing discretized functions and piecewise
constant functions. A function is said to be piecewise constant
if it is locally constant in connected regions.

The Haar transform is one of the earliest examples of what is
known now as a compact, dyadic, orthonormal wavelet trans-
form. The Haar function, being an odd rectangular pulse pair,
is the simplest and oldest orthonormal wavelet with compact
support. In the mean time, several definitions of the Haar
functions and various generalizations have been published
and used. They were intended to adopt this concept to some
practical applications as well as to extend its applications
to different classes of signals. Haar functions appear very
attractive in many applications as for example, image coding,
edge extraction, and binary logic design.

After discretizing the differential equations in a conventional
way like the finite difference approximation, wavelets can be
used for algebraic manipulations in the system of equations
obtained which lead to better condition number of the resulting
system.

The previous work in system analysis via Haar wavelets was
led by Chen and Hsiao [6], who first derived a Haar operational
matrix for the integrals of the Haar function vector and put the
application for the Haar analysis into the dynamical systems.
Then, the pioneer work in state analysis of linear time delayed
systems via Haar wavelets was laid down by Hsiao [10], who
first proposed a Haar product matrix and a coefficient matrix.
Hsiao and Wang proposed a key idea to transform the time-
varying function and its product with states into a Haar product
matrix.

The Haar wavelet family for is defined as follows.

hi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for t ∈ [
k
m ,

k+0.5
m

)
−1 for t ∈ [

k+0.5
m , k+1

m

)
0 elsewhere

(9)

Integer m = 2j (j = 0, 1, 2, . . . J) indicates the level of
the wavelet; k = 0,1,2, · · ·, m-1 is the translation parameter.

Maximal level of resolution is J. The index i is calculated
according to the formula i = m + k + 1 ; in the case of
minimal values m=1,k=0, we have i=2, the maximal value of i
is 2M = 2(J+1). It is assumed that the value i=1 corresponds
to the scaling function for which h1 ≡ 1 in [0, 1] . Let us
define the collocation points tl = (l − 0.5) /2M, (1, 2..., 2M)
and discretise the Haar function hi (t): In this way we get the
coefficient matrix , which has the dimension . The operational
matrix of integration P, which is a 2M square matrix, is defined
by the equation

(PH)il =
∫ tl

0

hi (t) dt (10)

(QH)il =
∫ tl

0

dt

∫ t

0

hi (t) dt (11)

The elements of the matrices H, P and Q can be evaluated
according to (1), (2) and (3).

H2 =
[

1 1
1 −1

]

P2 = 1
4

[
2 −1
1 0

]

H4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦

P4 = 1
16

⎡
⎢⎢⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤
⎥⎥⎦

P8 = 1
64

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 1 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 −1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chen and Hsiao[6] showed that the following matrix equation
for calculating the matrix P of order m holds

P(m) = 1
2m

[
2mP(m/2) −H(m/2)

H−1
(m/2) O

]
where O is a null matrix of order m

2 × m
2

Hm×mΔ [hm (t0) hm (t1) −−− hm (tm−1)] (12)

and i
m ≤ t < i+ 1

m and H−1
m×m = 1

mH
T
m×mdiag (r)

It should be noted that calculations for Pm and Hm

must be carried out only once; after that they will be
applicable for solving whatever differential equations. Since
H and H−1 contain many zeros, this phenomenon makes the
Haar transform much faster than the Fourier Transform and
it is even faster than the Walsh transform. This is one of the
reasons for rapid convergence of the Haar wavelet series.
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III. FUNCTION APPROXIMATION

Any function y (x) ∈ L2 [0, 1) can be decomposed as

y (x) = Σcnhn (x) (13)

where the coefficients cn are determined by

cn = 2j

∫ 1

0

y (x)hn (x) dx (14)

where n = 2j + k, j ≥ 0, 0 ≤ k < 2j . Especially
c0 =

∫ 1

0 y (x) dx.

The series expansion of y (x) contains infinite number of
terms. If y (x) is piecewise constant by itself, or may be
approximated as piecewise constant during each subinterval,
then y (x) will be terminated at finite terms, that is

y (x) = Σm−1
0 cnhn (x) = CT

(m)h(m) (x) (15)

where the coefficients CT
(m) and the Haar function vector

hm (x) are defined as
CT

(m) = [c0, c1, ..., cm−1] and hm (x) =
[h0 (x) , h1 (x) , ..., hm−1 (x)]T where ’T’ means transpose
and m = 2j

IV. HAAR WAVELET METHOD FOR ORDINARY

DIFFERENTIAL EQUATIONS

For solving linear Ordinary differential equation with n th

order, say
a1y

(n) (x) + a2y
(n−1) (x) + ... + any (x) =

f (x) , where x ∈ [A,B] and initial conditions
y(n−1) (a) , y(n−2) (a) , ..., y (a) are known.

We follow the work done by Lepik [13].We intend to do until
jth level of resolution, hence we let m = 2

(
2j

)
. The interval

[A,B] will be divided in to m subintervals, hence Δx = B−A
m

and the matrices are in the dimension of m × m. Here we
suggest the step-by-step procedures for easy understanding.
Mainly, there are 5 steps in the procedure,which are as follows.

Haar wavelet algorithm for solving Ordinary Differential
Equation:

Step 1: Let yn (x) = Σm
i=1aihi (x), where h is Haar matrix

and ai is the wavelet coefficients.

Step 2: Obtain appropriate ν order of y (x) by using
y(ν) (x) = Σm

i=1aiPn−ν,i (x) + Σn−ν−1
σ=0

1
σ! (x−A)σ

yν+σ
0

Step 3: Replace yn (x) and all of the values of y(ν) (x)in
to the problem.

Step 4: Calculate the wavelet coefficients, ai.

Step 5: Obtain the numerical solution for y (x).

Step 2 is the key procedure where the matrix Pn−ν,i (x) will
be counted.If we intend to do the calculation until level j of res-
olution , we will obtain the matrix Pn−ν (x) (let n− ν = α)
as in the pattern, where C = B −A.

V. METHOD OF SOLUTION OF FIRST BRATU-TYPE

PROBLEM

We consider the Bratu-type model

u
′′ − π2eu = 0, 0 < x < 1, u (0) = u (1) = 0 (16)

As indicated before, (16)differs from Bratu problem by the
value λ given by λ = −π2 < 0 However, in (1), λ = λc =
3.513830719 > 0. The effect of this change in λ will be
examined.

Any function u (x) ∈ L2 [0, 1) can be decomposed as

u (x) = Σm
i=1aihi (x) (17)

u (x) = Σm
i=1aiP2,i (x) + Σ1

σ=0

1
σ!

(x− 0)σ
y
(σ)
0 (18)

u (x) = Σn
i=1aiP2,i (x) + 1 + x (19)

By Carry out steps 1 to 3, we obtain

Σm
i=1aihi (x) − π2exp [Σm

i=1aiP2,i (x) + 1 + x] = 0 (20)

Solving the system of linear equations, we obtain wavelet
coefficients, ai and we obtain the numerical solution of u (x).

Using Adomain decomposition method, the exact solution
can be obtained by considering the boundary condition u (1) =
0 to obtain a = π, and consequently the closed form of the
solution

u (x) = −ln
[
1 + cos

((
1
2

+ x

)
π

)]
(21)

which is in full agreement with the results in [18].

VI. METHOD OF SOLUTION OF SECOND BRATU-TYPE

PROBLEM

We next consider the Bratu-type model

u
′′

+ π2e−u = 0, 0 < x < 1, u (0) = u (1) = 0 (22)

equation (22) differs from the standard Bratu-type Problem
by the term e−u and λ = π2 > λc The effect of these changes
will be examined.Using Adomain decomposition method, the
exact solution can be obtained by considering the boundary
condition u (1) = 0 to obtain a = π, and consequently the
closed form of the solution u (x) = ln [1 + sin (1 + πx)]
which is in full agreement with the results in [18].

Any function u (x) ∈ L2 [0, 1) can be decomposed as

u (x) = Σm
i=1aihi (x) (23)

u (x) = Σm
i=1aiP2,i (x) + Σn−ν−1

σ=0

1
σ!

(x− ν)σ y
(σ)
0 (24)
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u (x) = Σn
i=1aiP2,i (x) + 1 + x (25)

By Carry out steps 1 to 3, we obtain

Σm
i=1aihi (x) + π2exp [− (Σm

i=1aiP2,i (x) + 1 + x)] = 0
(26)

By carry out steps 4 to 5, we can obtain the Haar solutions.

VII. INITIAL VALUE PROBLEM OF THE BRATU-TYPE

We finally cionsider the initial value problem of Bratu-type

u
′′ − 2eu = 0, 0 < x < 1, u (0) = u

′
(0) = 0 (27)

Unlike the Bratu-type where boundaru conditiions are
used,(21) is an initial value problem where u (0) = u

′
(0) = 0

The exact solution in a closed form is given by

u (x) = −2ln [cos (x)] (28)

It is interesting to point out that the solution (22) is bounded
in the domain 0 ≤ x ≤ 1.

Any function u (x) ∈ L2 [0, 1) can be decomposed as

u (x) = Σm
i=1aihi (x) (29)

u (x) = Σm
i=1aiP2,i (x) + Σn−ν−1

σ=0

1
σ!

(x− ν)σ
y
(σ)
0 (30)

u (x) = Σn
i=1aiP2,i (x) + 1 + x (31)

By Carry out steps 1 to 3, we obtain

Σm
i=1aihi (x) − 2exp [(Σm

i=1aiP2,i (x) + 1 + x)] = 0 (32)

By carry out steps 4 to 5, we can obtain the Haar solutions.

Fig. 1. Haar and Exact solutions for the initial value problem of Bratu-Type
equation(27)

Fig 1 shows the comparison between the Haar and exact
solutions of initial value problem of Bratu-type equation (27).
In this example,m=16 is used.

VIII. CONCLUSION

The main goal of this paper is to demonstrate that Haar
wavelet method is a powerful tool for solving initial and
boundary value problems of Bratu-type. The algotithm and
procedure have been applied to use Haar wavelet method
in solving ODE’s. The result is compared with the exact
solutions. The method with far less degrees of freedom and
with smaller CPU time provides better solutions than classical
ones. It is worthmentioning that Haar solution provides ex-
cellent results even for small values of m(m=16). For larger
values of m (m=32,m=64), we can obtain the results closer
to exact values. The main advantages of this method are
its simplicity and small computation costs: it is due to the
sparcity of the transform matrices and to the small number
of significant wavelet coefficients. The method is also very
convenient for solving the boundary value problems, since the
boundary conditions are taken care of automatically. In our
opinion the method is wholly competetive in comparison with
the classical methods.
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