Search results for: Speed estimation
1008 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601007 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731006 Analyzing and Formulation of Product Lead Time
Authors: B. Fahimnia, L.H.S. Luong, B. Motevallian, R. M. Marian, M. M. Esmaeil
Abstract:
Product Lead Time (PLT) is the period of time from receiving a customer's order to delivering the final product. PLT is an indicator of the manufacturing controllability, efficiency and performance. Due to the explosion in the rate of technological innovations and the rapid changes in the nature of manufacturing processes, manufacturing firms can bring the new products to market quicker only if they can reduce their PLT and speed up the rate at which they can design, plan, control, and manufacture. Although there is a substantial body of research on manufacturing relating to cost and quality issues, there is no much specific research conducted in relation to the formulation of PLT, despite its significance and importance. This paper analyzes and formulates PLT which can be used as a guideline for achieving the shorter PLT. Further more this paper identifies the causes of delay and factors that contributes to the increased product lead-time.Keywords: Manufacturing Control, Manufacturing Lead Time, Manufacturing Planning, Product Design, and Product Lead Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651005 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach
Authors: Adrian O’Hagan, Robert McLoughlin
Abstract:
Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.
Keywords: Empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48471004 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13171003 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error
Authors: R. Sabre, W. Horrigue, J. C. Simon
Abstract:
This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.
Keywords: Spectral density, stable processes, aliasing, periodogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651002 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.
Keywords: ARIMA, electricity consumption, forecasting models, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831001 E-Voting: A Trustworthiness In Democratic; A View from Technology, Political and Social Issue
Authors: Sera Syarmila Sameon, Rohaini Ramli
Abstract:
A trustworthy voting process in democratic is important that each vote is recorded with accuracy and impartiality. The accuracy and impartiality are tallied in high rate with biometric system. One of the sign is a fingerprint. Fingerprint recognition is still a challenging problem, because of the distortions among the different impression of the same finger. Because of the trustworthy of biometric voting technologies, it may give a great effect on numbers of voter-s participation and outcomes of the democratic process. Hence in this study, the authors are interested in designing and analyzing the Electronic Voting System and the participation of the users. The system is based on the fingerprint minutiae with the addition of person ID number. This is in order to enhance the accuracy and speed of the voting process. The new design is analyzed by conducting pilot election among a class of students for selecting their representative.Keywords: Biometric, FAR and FRR, democratic, voting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701000 Predicting Extrusion Process Parameters Using Neural Networks
Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang
Abstract:
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368999 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.
Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693998 Analysis of CNT Bundle and its Comparison with Copper for FPGAs Interconnects
Authors: Kureshi Abdul Kadir, Mohd. Hasan
Abstract:
Each new semiconductor technology node brings smaller transistors and wires. Although this makes transistors faster, wires get slower. In nano-scale regime, the standard copper (Cu) interconnect will become a major hurdle for FPGA interconnect due to their high resistivity and electromigration. This paper presents the comprehensive evaluation of mixed CNT bundle interconnects and investigates their prospects as energy efficient and high speed interconnect for future FPGA routing architecture. All HSPICE simulations are carried out at operating frequency of 1GHz and it is found that mixed CNT bundle implemented in FPGAs as interconnect can potentially provide a substantial delay and energy reduction over traditional interconnects at 32nm process technology.Keywords: CMOS, Copper Interconnect, Mixed CNT Bundle Interconnect, FPGAs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636997 Vector Control of Multimotor Drive
Authors: Archana S. Nanoty, A. R. Chudasama
Abstract:
Three-phase induction machines are today a standard for industrial electrical drives. Cost, reliability, robustness and maintenance free operation are among the reasons these machines are replacing dc drive systems. The development of power electronics and signal processing systems has eliminated one of the greatest disadvantages of such ac systems, which is the issue of control. With modern techniques of field oriented vector control, the task of variable speed control of induction machines is no longer a disadvantage. The need to increase system performance, particularly when facing limits on the power ratings of power supplies and semiconductors, motivates the use of phase number other than three, In this paper a novel scheme of connecting two, three phase induction motors in parallel fed by two inverters; viz. VSI and CSI and their vector control is presented.Keywords: Field oriented control, multiphase induction motor, power electronics converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3382996 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization
Authors: Kheldoun Aissa, Khodja Djalal Eddine
Abstract:
The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703995 Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding
Authors: Abhijit Mitra
Abstract:
An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.
Keywords: Document image extraction, Preprocessing, Ratio of stan-dard deviations, Bi-level adaptive thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457994 The Effects of Detector Spacing on Travel Time Prediction on Freeways
Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu
Abstract:
Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669993 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation
Authors: Attapon Charoenpon, Ekkarach Pankeaw
Abstract:
This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.
Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668992 Collection of Untraditionally Developed Academic IT Services in Eastern Europe
Authors: Rihards Balodis, Inara Opmane
Abstract:
Deep and radical social reforms of the last century-s nineties in many Eastern European countries caused changes in Information Technology-s (IT) field. Inefficient information technologies were rapidly replaced with forefront IT solutions, e.g., in Eastern European countries there is a high level penetration of qualitative high-speed Internet. The authors have taken part in the introduction of those changes in Latvia-s leading IT research institute. Grounding on their experience authors in this paper offer an IT services based model for analysis the mentioned changes- and development processes in the higher education and research fields, i.e., for research e-infrastructure-s development. Compare to the international practice such services were developed in Eastern Europe in an untraditional way, which provided swift and positive technological changes.Keywords: Computing, data networking, e-infrastructure, IT services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905991 M-Learning the Next Generation of Education in Cyberspace
Authors: Nasser Alalwan, Ahmed Alzahrani, Mohamed Sarrab
Abstract:
The technology usages of high speed Internet leads to establish and start new era of online education. With the advancement of the information technology and communication systems new opportunities have been created. This leads universities to have various online education channels to meet the demand of different learners- needs. One of these channels is M-learning, which can be used to improve the online education environment. With using such mobile technology in learning both students and instructors can easily access educational courses anytime from anywhere. The paper first presents literature about mobile learning and to what extent this approach can be utilized to enhance the overall learning system. It provides a comparison between mobile learning and traditional elearning showing the wide array of benefits of the new generation of technology. The possible challenges and potential advantages of Mlearning in the online education system are also discussed.Keywords: Mobile learning, M-learning, eLearning, Educational system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109990 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
Authors: M. Kakavand, S. A. Naeini
Abstract:
Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.
Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886989 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618988 Identification of Roadway Wavelengths Affecting the Dynamic Responses of Bridges due to Vehicular Loading
Authors: Ghada Karaki
Abstract:
The bridge vibration due to traffic loading has been a subject of extensive research during the last decades. A number of these studies are concerned with the effects of the unevenness of roadways on the dynamic responses of highway bridges. The road unevenness is often described as a random process that constitutes of different wavelengths. Thus, the study focuses on examining the effects of the random description of roadways on the dynamic response and its variance. A new setting of variance based sensitivity analysis is proposed and used to identify and quantify the contributions of the roadway-s wavelengths to the variance of the dynamic response. Furthermore, the effect of the vehicle-s speed on the dynamic response is studied.Keywords: vehicle bridge interaction, sensitivity analysis, road unevenness, random processes, critical speeds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459987 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror
Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin
Abstract:
The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).
Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938986 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.
Keywords: Crack size, Fatigue crack propagation, Magnesium alloys, Probability distribution, Specimen thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854985 Video Super-Resolution Using Classification ANN
Authors: Ming-Hui Cheng, Jyh-Horng Jeng
Abstract:
In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.
Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805984 Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection
Authors: Imron Rosyadi, Ridha A. Djemal, Saleh A. Alshebeili
Abstract:
Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113983 Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream, Isparta- Turkey
Authors: Hasan Kalyoncu, Burcu Şerbetci
Abstract:
Diatoms are an important group of aquatic ecosystems and diatom-based indices are increasingly becoming important tools for the assessment of ecological conditions in lotic systems. Although the studies are very limited about Turkish rivers, diatom indices were used for monitoring rivers in different basins. In the present study, we used OMNIDIA program for estimation of stream quality. Some indices have less sensitive (IDP, WAT, LOBO, GENRE, TID, CEE, PT), intermediate sensitivities (IDSE, DESCY, IPS, DI-CH, SLA, IDAP), the others higher sensitivities (SID, IBD, SHE, EPI-D). Among the investigated diatom communities, only a few taxa indicated alfa-mesosaprobity and polysaprobity. Most of the sites were characterized by a great relative contribution of eutraphent and tolerant ones as well as oligosaprobic and betamesosaprobic diatoms. In general, SID and IBD indices gave the best results. This study suggests that the structure of benthic diatom communities and diatom indices, especially SID, can be applied for monitoring rivers in Southern Turkey.
Keywords: Diatom, Darı stream, OMNIDIA, Turkey, Water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921982 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach
Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon
Abstract:
In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.Keywords: Feature, intensity, contour, hybrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831981 Use Cases Analysis of Free Space Optical Communication System
Authors: K. Saab, F. Bart, Y.-M. Seveque
Abstract:
The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.
Keywords: End-to-end optical communication, laser propagation, optical ground station, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139980 An Optical Flow Based Segmentation Method for Objects Extraction
Abstract:
This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894979 Investigation of the Tattooed Skin by OCT
Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim
Abstract:
The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.Keywords: mechanical skin damage, optical coherence tomography, tattooed skin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766