@article{(Open Science Index):https://publications.waset.org/pdf/10001252,
	  title     = {Knowledge Representation Based On Interval Type-2 CFCM Clustering},
	  author    = {Myung-Won Lee and  Keun-Chang Kwak},
	  country	= {},
	  institution	= {},
	  abstract     = {This paper is concerned with knowledge representation
and extraction of fuzzy if-then rules using Interval Type-2
Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of
fuzzy granulation. This proposed clustering algorithm is based on
information granulation in the form of IT2 based Fuzzy C-Means
(IT2-FCM) clustering and estimates the cluster centers by preserving
the homogeneity between the clustered patterns from the IT2 contexts
produced in the output space. Furthermore, we can obtain the
automatic knowledge representation in the design of Radial Basis
Function Networks (RBFN), Linguistic Model (LM), and Adaptive
Neuro-Fuzzy Networks (ANFN) from the numerical input-output data
pairs. We shall focus on a design of ANFN in this paper. The
experimental results on an estimation problem of energy performance
reveal that the proposed method showed a good knowledge
representation and performance in comparison with the previous
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {9},
	  number    = {6},
	  year      = {2015},
	  pages     = {1373 - 1377},
	  ee        = {https://publications.waset.org/pdf/10001252},
	  url   	= {https://publications.waset.org/vol/102},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 102, 2015},