Search results for: Industrial ores classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2146

Search results for: Industrial ores classification

706 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities

Authors: Khaled M. Alhawiti

Abstract:

This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.

Keywords: Data Retrieval, Information retrieval, Natural Language Processing, Text Structuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
705 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: Gamma ray irradiation, Hard Ferrite, Magnetic coefficient, Radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
704 Vector Control of Multimotor Drive

Authors: Archana S. Nanoty, A. R. Chudasama

Abstract:

Three-phase induction machines are today a standard for industrial electrical drives. Cost, reliability, robustness and maintenance free operation are among the reasons these machines are replacing dc drive systems. The development of power electronics and signal processing systems has eliminated one of the greatest disadvantages of such ac systems, which is the issue of control. With modern techniques of field oriented vector control, the task of variable speed control of induction machines is no longer a disadvantage. The need to increase system performance, particularly when facing limits on the power ratings of power supplies and semiconductors, motivates the use of phase number other than three, In this paper a novel scheme of connecting two, three phase induction motors in parallel fed by two inverters; viz. VSI and CSI and their vector control is presented.

Keywords: Field oriented control, multiphase induction motor, power electronics converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3382
703 Evaluation of Chromium Contamination in the Sediments of Jen-Gen River Mouth, Taiwan

Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong

Abstract:

This study was conducted using the data collected at the mouth of Jen-Gen River to investigate and analyze chromium (Cr) contained in the sediments, and to evaluate the accumulation of Cr and the degree of its potential risk. The results show that samples collected at all monitoring stations near the mouth of Jen-Gen River contain 92–567 mg/kg of Cr with average of 366±166 mg/kg. The spatial distribution of Cr reveals that the Cr concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of pollution. The accumulation factor and potential ecological risk index indicate that the sedimentation at Jen-Gen River mouth has the most serious degree of Cr accumulation and the highest ecological potential risk.

Keywords: chromium, sediment, river mouth, enrichment factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
702 Vision Based Robot Experiment: Measurement of Path Related Characteristics

Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour

Abstract:

In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.

Keywords: Robot, Vision, Experiment, Standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
701 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: Actionable pattern discovery, education, emotion, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
700 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.

Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
699 Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving

Authors: Marcus Walter, Norbert Nitzsche, Dirk Odenthal, Steffen M¨uller

Abstract:

This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle.

Keywords: Friction estimation, friction compensation, steering system, lateral vehicle guidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
698 Energetic Considerations for Sputter Deposition Processes

Authors: Dirk Hegemann, Martin Amberg

Abstract:

Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.

Keywords: Energy density, film growth, momentum transfer, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
697 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
696 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: Coregionalization, ordinary cokriging, multivariate geostatistical analysis, soil contamination, soil heavy metals, risk maps, spatial distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
695 Calibration of Parallel Multi-View Cameras

Authors: M. Ali-Bey, N. Manamanni, S. Moughamir

Abstract:

This paper focuses on the calibration problem of a multi-view shooting system designed for the production of 3D content for auto-stereoscopic visualization. The considered multiview camera is characterized by coplanar and decentered image sensors regarding to the corresponding optical axis. Based on the Faugéras and Toscani-s calibration approach, a calibration method is herein proposed for the case of multi-view camera with parallel and decentered image sensors. At first, the geometrical model of the shooting system is recalled and some industrial prototypes with some shooting simulations are presented. Next, the development of the proposed calibration method is detailed. Finally, some simulation results are presented before ending with some conclusions about this work.

Keywords: Auto-stereoscopic display, camera calibration, multi-view cameras, visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
694 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Authors: Jan Busch, Peter Nyhuis

Abstract:

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity, and the required nozzle pressure is presented.

Keywords: Aerodynamic feeding system, genetic algorithm, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
693 Analyzing Convergence of IT and Energy Industry Based on Social System Framework

Authors: Giseob Byun, Ji Yeon Cho, Bong Gyou Lee

Abstract:

The purpose of this study is to analyze Green IT industry in major developed countries and to suggest overall directions for IT-Energy convergence industry. Recently, IT industry is pointed out as a problem such as environmental pollution, energy exhaustion, and high energy consumption. Therefore, Green IT gets focused which concerns as solution of these problems. However, since it is a beginning stage of this convergence area, there are only a few studies of IT-Energy convergence industry. According to this, this study examined the major developed countries in terms of institution arrangements, resources, markets and companies based on Van de Ven(1999)'s social system framework that shows relationship among key components of industrial infrastructure. Subsequently, the direction of the future study of convergence on IT and Energy industry is proposed.

Keywords: Green IT, Energy industry, Convergence, Social System Framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
692 Analysis of Brain Activities due to Differences in Running Shoe Properties

Authors: K. Okubo, Y. Kurihara, T. Kaburagi, K. Watanabe

Abstract:

Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for 10 min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.

Keywords: Brain activities, NIRS, PASAT, running shoes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
691 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
690 An Overview of Electronic Waste as Aggregate in Concrete

Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan

Abstract:

Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.

Keywords: Disposal, electronic waste, landfill, toxic chemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
689 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: Brain-computer interface, speech recognition, electroencephalography EEG, Wernicke area, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
688 Cross Signal Identification for PSG Applications

Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu

Abstract:

The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.

Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
687 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: Android, permissions combination, API calls, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
686 Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Authors: A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Keywords: Hydrothermal synthesis, magnesium borates, magnesium wastes, boron oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
685 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8055
684 Immobilization of Aspergillus awamori 1-8 for Subsequent Pectinase Production

Authors: Zh. B. Suleimenova, Zh. K. Rakhmetova, R. K. Blieva, A. E. Nurlybayeva

Abstract:

The overall objective of this research is a strain improvement technology for efficient pectinase production. A novel cells cultivation technology by immobilization of fungal cells has been studied in long time continuous fermentations. Immobilization was achieved by using of new material for absorption of stores of immobilized cultures which was for the first time used for immobilization of microorganisms. Effects of various conditions of nitrogen and carbon nutrition on the biosynthesis of pectolytic enzymes in Aspergillus awamori 1-8 strain were studied. Proposed cultivation technology along with optimization of media components for pectinase overproduction led to increased pectinase productivity in Aspergillus awamori 1-8 from 7 to 8 times. Proposed technology can be applied successfully for production of major industrial enzymes such as α-amylase, protease, collagenase etc.

Keywords: Aspergillus awamori, immobilization, pectolytic enzymes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
683 Potential of Lavender (Lavandula vera L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Dimitar F. Grekov, Veselin K. Kisyov, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the efficacy of lavender for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in lavender (roots, stems, leaves and inflorescences) and in the essential oils of lavender were determined. Lavender is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of lead and the accumulators of cadmium and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. Favorable is also the fact that heavy metals do not influence the development of the lavender, as well as on the quality and quantity of the essential oil. The possibility of further industrial processing will make lavender economically interesting crops for farmers of phytoextraction technology.

Keywords: Heavy metals, lavender, phytoremediation, polluted soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4434
682 Evolutionary Approach for Automated Discovery of Censored Production Rules

Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh

Abstract:

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
681 Daily and Seasonal Changes of Air Pollution in Kuwait

Authors: H. Ettouney, A. AL-Haddad, S. Saqer

Abstract:

This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.

Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
680 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
679 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: Bioremediation, green remediation, phytoremediation, remediation technologies, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
678 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
677 Industrial Applications of Laser Engraving: Influence of the Process Parameters on Machined Surface Quality

Authors: F.Agalianos, S.Patelis , P. Kyratsis, E. Maravelakis, E.Vasarmidis, A.Antoniadis

Abstract:

Laser engraving is a manufacturing method for those applications where previously Electrical Discharge Machining (EDM) was the only choice. Laser engraving technology removes material layer-by-layer and the thickness of layers is usually in the range of few microns. The aim of the present work is to investigate the influence of the process parameters on the surface quality when machined by laser engraving. The examined parameters were: the pulse frequency, the beam speed and the layer thickness. The surface quality was determined by the surface roughness for every set of parameters. Experimental results on Al7075 material showed that the surface roughness strictly depends on the process parameters used.

Keywords: Laser engraving, Al7075, Yb: YAG laser, laser process parameters, material roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560