Energetic Considerations for Sputter Deposition Processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Energetic Considerations for Sputter Deposition Processes

Authors: Dirk Hegemann, Martin Amberg

Abstract:

Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.

Keywords: Energy density, film growth, momentum transfer, sputtering.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087273

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446

References:


[1] V.S. Smentkowski, Progr. Surf. Sci. 64 (2000) 1-58.
[2] R.A. Baragiola, Phil. Trans. R. Soc. Lond. A 362 (2004) 29-53.
[3] M.P. Seah, Nucl. Instr. Meth. Phys. Res. B 229 (2005) 348-358.
[4] P. Sigmund, in: Sputtering by Particle Bombardement, Vol. I, ed. R. Behrisch, Springer-Verlag, Berlin, Germany, 1981, pp 9-71.
[5] S.J. Bull, A.M. Jones, A.R. McCabe, Surf. Coat. Technol. 54/55 (1992) 173-179.
[6] I. Petrov, F. Adibi, J.E. Greene, L. Hultman, J.E. Sundgren, Appl. Phys. Lett. 63 (1993) 36-38.
[7] A. Hemberg, S. Konstantinidis, F. Renaux, J.P. Dauchot, R. Snyders, Eur. Phys. J. Appl. Phys. 56 (2011) 24016 (5pp).
[8] S. Konstantinidis, R. Snyders, Eur. Phys. J. Appl. Phys. 56 (2011) 24002 (7pp).
[9] D. Hegemann, E. Körner, N. Blanchard, M. Drabik, S. Guimond, Appl. Phys. Lett. 101 (2012) 211603 (4pp).
[10] A. Manenschijn, W.J. Goedher, J. Appl. Phys. 69 (1991) 2923-2930.
[11] D. Hegemann, R. Riedel, W. Dressler, C. Oehr, B. Schindler, H. Brunner, Chem. Vap. Dep. 3 (1997) 257-262.
[12] D. Hegemann, J.Phys D: Appl. Phys. 46 (2013) 205204 (8pp).
[13] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York, USA, 1994, p 140.
[14] A.V. Phelps, J. Phys. Chem. Ref. Data 20 (1991) 557-574.
[15] Y. Kudriavtsev, A. Villegas, A. Godines, R. Asomoza, Appl. Surf. Sci. 239 (2005) 273-278.
[16] R.V. Stuart, G.K. Wehner, G.S. Anderson, J. Appl. Phys. 40 (1969) 803- 812.
[17] R.D. Kolasinski, J.E. Polk, D. Goebel, L.K. Johnson, J. Vac. Sci. Technol. A 25 (2007) 236-245.
[18] M. Koedam, Physica 24 (1958) 692-694.
[19] H.K. Pulker, Coatings on Glass, Elsevier, Amsterdam, The Netherlands, 1984, p 216.
[20] K.H. Müller, J. Appl. Phys. 58 (1985) 2573-2576.
[21] G.I. Grigorov, I.N. Martev, M.V. Stoyanova, J.L. Vignes, J.P. Langeron, Thin Solid Films 198 (1991) 169-176.
[22] D. Hegemann, H. Brunner, C. Oehr, Surf. Coat. Technol. 174-175 (2003) 253-260.
[23] M. Amberg, K. Grieder, P. Barbadoro, M. Heuberger, D. Hegemann, Plasma Process. Polym. 5 (2008) 874-880.
[24] D. Hegemann, M. Amberg, A. Ritter, M. Heuberger, Mater. Technol. 24 (2009) 41-45.
[25] M. Amberg, C. Kasdallah, A. Ritter, D. Hegemann, J. AdhesionSci. Technol.24 (2010) 123-134.
[26] A. Hecimovic, A.P. Ehiasarian, J. Appl. Phys. 108 (2010) 063301 (8pp).
[27] B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, New York, USA, 1980, p 215.
[28] A.G. Blachman, Metall. Trans.2 (1971) 699-709.
[29] G. Franz, Low Pressure Plasmas and Microstructuring Technology, Springer, Heidelberg, Germany, 2009, p 412.
[30] J. Trieschmann, D. Hegemann, J. Phys. D: Appl. Phys. 44 (2011) 457201 (9pp).
[31] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159-172.
[32] F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.E. Sundgren, J. Appl. Phys. 73 (1993) 8580-8589.