WASET
	%0 Journal Article
	%A Nassib Abdallah and  Pierre Chauvet and  Abd El Salam Hajjar and  Bassam Daya
	%D 2018
	%J International Journal of Biomedical and Biological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 142, 2018
	%T Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
	%U https://publications.waset.org/pdf/10009609
	%V 142
	%X In this paper, we propose an optimized brain computer
interface (BCI) system for unspoken speech recognition, based on
the fact that the constructions of unspoken words rely strongly on the
Wernicke area, situated in the temporal lobe. Our BCI system has four
modules: (i) the EEG Acquisition module based on a non-invasive
headset with 14 electrodes; (ii) the Preprocessing module to remove
noise and artifacts, using the Common Average Reference method;
(iii) the Features Extraction module, using Wavelet Packet Transform
(WPT); (iv) the Classification module based on a one-hidden layer
artificial neural network. The present study consists of comparing
the recognition accuracy of 5 Arabic words, when using all the
headset electrodes or only the 4 electrodes situated near the Wernicke
area, as well as the selection effect of the subbands produced by
the WPT module. After applying the articial neural network on the
produced database, we obtain, on the test dataset, an accuracy of
83.4% with all the electrodes and all the subbands of 8 levels of the
WPT decomposition. However, by using only the 4 electrodes near
Wernicke Area and the 6 middle subbands of the WPT, we obtain
a high reduction of the dataset size, equal to approximately 19% of
the total dataset, with 67.5% of accuracy rate. This reduction appears
particularly important to improve the design of a low cost and simple
to use BCI, trained for several words.
	%P 456 - 462