WASET
	%0 Journal Article
	%A Kamal K. Bharadwaj and  Basheer M. Al-Maqaleh
	%D 2007
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 10, 2007
	%T Evolutionary Approach for Automated Discovery of Censored Production Rules
	%U https://publications.waset.org/pdf/14169
	%V 10
	%X In the recent past, there has been an increasing interest
in applying evolutionary methods to Knowledge Discovery in
Databases (KDD) and a number of successful applications of Genetic
Algorithms (GA) and Genetic Programming (GP) to KDD have been
demonstrated. The most predominant representation of the
discovered knowledge is the standard Production Rules (PRs) in the
form If P Then D. The PRs, however, are unable to handle
exceptions and do not exhibit variable precision. The Censored
Production Rules (CPRs), an extension of PRs, were proposed by
Michalski & Winston that exhibit variable precision and supports an
efficient mechanism for handling exceptions. A CPR is an
augmented production rule of the form:
If P Then D Unless C, where C (Censor) is an exception to the rule.
Such rules are employed in situations, in which the conditional
statement 'If P Then D' holds frequently and the assertion C holds
rarely. By using a rule of this type we are free to ignore the exception
conditions, when the resources needed to establish its presence are
tight or there is simply no information available as to whether it
holds or not. Thus, the 'If P Then D' part of the CPR expresses
important information, while the Unless C part acts only as a switch
and changes the polarity of D to ~D.
This paper presents a classification algorithm based on evolutionary
approach that discovers comprehensible rules with exceptions in the
form of CPRs.
The proposed approach has flexible chromosome encoding, where
each chromosome corresponds to a CPR. Appropriate genetic
operators are suggested and a fitness function is proposed that
incorporates the basic constraints on CPRs. Experimental results are
presented to demonstrate the performance of the proposed algorithm.
	%P 3230 - 3235