%0 Journal Article
	%A Kifah Tout and  Nisrine Sinno and  Mohamad Mikati
	%D 2008
	%J International Journal of Medical and Health Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 17, 2008
	%T Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
	%U https://publications.waset.org/pdf/6541
	%V 17
	%X Many studies have focused on the nonlinear analysis
of electroencephalography (EEG) mainly for the characterization of
epileptic brain states. It is assumed that at least two states of the
epileptic brain are possible: the interictal state characterized by a
normal apparently random, steady-state EEG ongoing activity; and
the ictal state that is characterized by paroxysmal occurrence of
synchronous oscillations and is generally called in neurology, a
seizure.
The spatial and temporal dynamics of the epileptogenic process is
still not clear completely especially the most challenging aspects of
epileptology which is the anticipation of the seizure. Despite all the
efforts we still don-t know how and when and why the seizure
occurs. However actual studies bring strong evidence that the
interictal-ictal state transition is not an abrupt phenomena. Findings
also indicate that it is possible to detect a preseizure phase.
Our approach is to use the neural network tool to detect interictal
states and to predict from those states the upcoming seizure ( ictal
state). Analysis of the EEG signal based on neural networks is used
for the classification of EEG as either seizure or non-seizure. By
applying prediction methods it will be possible to predict the
upcoming seizure from non-seizure EEG.
We will study the patients admitted to the epilepsy monitoring
unit for the purpose of recording their seizures. Preictal, ictal, and
post ictal EEG recordings are available on such patients for analysis
The system will be induced by taking a body of samples then
validate it using another. Distinct from the two first ones a third body
of samples is taken to test the network for the achievement of
optimum prediction. Several methods will be tried 'Backpropagation
ANN' and 'RBF'.
	%P 150 - 157