Search results for: Dynamic Memory Leak Detection (DMLD).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3759

Search results for: Dynamic Memory Leak Detection (DMLD).

2349 Database Placement on Large-Scale Systems

Authors: Cherif Haddad, Faouzi Ben Charrada

Abstract:

Large-scale systems such as Grids offer infrastructures for both data distribution and parallel processing. The use of Grid infrastructures is a more recent issue that is already impacting the Distributed Database Management System industry. In DBMS, distributed query processing has emerged as a fundamental technique for ensuring high performance in distributed databases. Database placement is particularly important in large-scale systems because it reduces communication costs and improves resource usage. In this paper, we propose a dynamic database placement policy that depends on query patterns and Grid sites capabilities. We evaluate the performance of the proposed database placement policy using simulations. The obtained results show that dynamic database placement can significantly improve the performance of distributed query processing.

Keywords: Large-scale systems, Grid environment, Distributed Databases, Distributed query processing, Database placement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2348 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, Dynamics, Lagrange, Parallel platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
2347 Damage Evaluation of Curved Steel Bridges Upgraded with Isolation Bearings and Unseating Prevention Cable Restrainers

Authors: Carlos Mendez Galindo, Toshiro Hayashikawa, Javier Gil Belda

Abstract:

This paper investigates the effectiveness of the use of seismic isolation devices on the overall 3D seismic response of curved highway viaducts with an emphasis on expansion joints. Furthermore, an evaluation of the effectiveness of the use of cable restrainers is presented. For this purpose, the bridge seismic performance has been evaluated on four different radii of curvature, considering two cases: restrained and unrestrained curved viaducts. Depending on the radius of curvature, three-dimensional non-linear dynamic analysis shows the vulnerability of curved viaducts to pounding and deck unseating damage. In this study, the efficiency of using LRB supports combined with cable restrainers on curved viaducts is demonstrated, not only by reducing in all cases the possible damage, but also by providing a similar behavior in the viaducts despite of curvature radius.

Keywords: Nonlinear dynamic response, seismic design, seismic isolation, unseating prevention system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
2346 Feature Point Reduction for Video Stabilization

Authors: Theerawat Songyot, Tham Manjing, Bunyarit Uyyanonvara, Chanjira Sinthanayothin

Abstract:

Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.

Keywords: background object tracking, feature point reduction, low cost tracking, video stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2345 A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques

Authors: Abdallah S. Abdallah, Mohamad A bou El-Nasr, A. Lynn Abbott

Abstract:

This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.

Keywords: Image database, color image analysis, facedetection, skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
2344 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6249
2343 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
2342 Development of a Robust Supply Chain for Dynamic Operating Environment

Authors: Shilan Li, Ivan Arokiam, Peter Jarvis, Wendy Garner, Gazelleh Moradi, Stuart Wakefield

Abstract:

Development of a Robust Supply Chain for Dynamic Operating Environment as we move further into the twenty first century, organisations are under increasing pressure to deliver a high product variation at a reasonable cost without compromise in quality. In a number of cases this will take the form of a customised or high variety low volume manufacturing system that requires prudent management of resources, among a number of functions, to achieve competitive advantage. Purchasing and Supply Chain management is one of such function and due to the substantial interaction with external elements needs to be strategically managed. This requires a number of primary and supporting tools that will enable the appropriate decisions to be made rapidly. This capability is especially vital in a dynamic environment as it provides a pivotal role in increasing the profit margin of the product. The management of this function can be challenging by itself and even more for Small and Medium Enterprises (SMEs) due to the limited resources and expertise available at their disposal. This paper discusses the development of tools and concepts towards effectively managing the purchasing and supply chain function. The developed tools and concepts will provide a cost effective way of managing this function within SMEs. The paper further shows the use of these tools within Contechs, a manufacturer of luxury boat interiors, and the associated benefits achieved as a result of this implementation. Finally a generic framework towards use in such environments is presented.

Keywords: Lean, Supply Chain, High variety Low volume, Small and Medium Enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
2341 Theoretical Modal Analysis of Freely and Simply Supported RC Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with the exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of the mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have the direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted.

Keywords: Natural frequencies, Mode shapes, Modal analysis, ANSYS software, RC slabs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
2340 Capacitive Air Bubble Detector Operated at Different Frequencies for Application in Hemodialysis

Authors: Mawahib Gafare Abdalrahman Ahmed, Abdallah Belal Adam, John Ojur Dennis

Abstract:

Air bubbles have been detected in human circulation of end-stage renal disease patients who are treated by hemodialysis. The consequence of air embolism, air bubbles, is under recognized and usually overlooked in daily practice. This paper shows results of a capacitor based detection method that capable of detecting the presence of air bubbles in the blood stream in different frequencies. The method is based on a parallel plates capacitor made of platinum with an area of 1.5 cm2 and a distance between the two plates is 1cm. The dielectric material used in this capacitor is Dextran70 solution which mimics blood rheology. Simulations were carried out using RC circuit at two frequencies 30Hz and 3 kHz and results compared with experiments and theory. It is observed that by injecting air bubbles of different diameters into the device, there were significant changes in the capacitance of the capacitor. Furthermore, it is observed that the output voltage from the circuit increased with increasing air bubble diameter. These results demonstrate the feasibility of this approach in improving air bubble detection in Hemodialysis.

Keywords: Air bubbles, Hemodialysis, Capacitor, Dextran70, Air bubbles diameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3246
2339 A Fuzzy Implementation for Optimization of Storage Locations in an Industrial AS/RS

Authors: C. Senanayake, S. Veera Ragavan

Abstract:

Warehousing is commonly used in factories for the storage of products until delivery of orders. As the amount of products stored increases it becomes tedious to be carried out manually. In recent years, the manual storing has converted into fully or partially computer controlled systems, also known as Automated Storage and Retrieval Systems (AS/RS). This paper discusses an ASRS system, which was designed such that the best storage location for the products is determined by utilizing a fuzzy control system. The design maintains the records of the products to be/already in store and the storage/retrieval times along with the availability status of the storage locations. This paper discusses on the maintenance of the above mentioned records and the utilization of the concept of fuzzy logic in order to determine the optimum storage location for the products. The paper will further discuss on the dynamic splitting and merging of the storage locations depending on the product sizes.

Keywords: ASRS, fuzzy control systems, MySQL database, dynamic splitting and merging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
2338 Effect of the Seasonal Variation in the Extrinsic Incubation Period on the Long Term Behavior of the Dengue Hemorrhagic Fever Epidemic

Authors: Puntani Pongsumpun, I-Ming Tang

Abstract:

The incidences of dengue hemorrhagic disease (DHF) over the long term exhibit a seasonal behavior. It has been hypothesized that these behaviors are due to the seasonal climate changes which in turn induce a seasonal variation in the incubation period of the virus while it is developing the mosquito. The standard dynamic analysis is applied for analysis the Susceptible-Exposed- Infectious-Recovered (SEIR) model which includes an annual variation in the length of the extrinsic incubation period (EIP). The presence of both asymptomatic and symptomatic infections is allowed in the present model. We found that dynamic behavior of the endemic state changes as the influence of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the trajectory exhibits sustained oscillations when it leaves the chaotic region.

Keywords: Chaotic behavior, dengue hemorrhagic fever, extrinsic incubation period, SEIR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
2337 Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing

Authors: J. Seetaram, P. Satish Kumar

Abstract:

Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.

Keywords: Mobile Adhoc Network (MANET), unipath, multipath, Adhoc On-demand Multipath Distance Vector routing (AOMDV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2336 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
2335 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks

Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi

Abstract:

Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.

Keywords: Fiber-Wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
2334 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: Dynamic behavior, unsteady model, LaNi5, performance of the water pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
2333 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution

Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell

Abstract:

This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.

Keywords: Detection, leakage, neural networks, sensors, water distribution networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
2332 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.

Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
2331 Comparative Analysis of Machine Learning Tools: A Review

Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha

Abstract:

Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.

Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
2330 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.

Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
2329 A Hybrid Method for Eyes Detection in Facial Images

Authors: Muhammad Shafi, Paul W. H. Chung

Abstract:

This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.

Keywords: Erosion, dilation, Edge-density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
2328 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
2327 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2326 Dynamic Modeling and Simulation of a STATCOM/SMES Compensator in Power Systems

Authors: Reza Sedaghati, Mojtaba Hakimzadeh, Abdolmohamad Davodi, Navid Javidtash

Abstract:

The advent of Flexible AC Transmission Systems (FACTS) is giving rise to a new family of power electronic equipment emerging for controlling and optimizing the performance of power system, e.g. STATCOM. Static synchronous Compensator (STATCOM) is a commonly used FACTS device and has been successfully applied in power systems. In this sense, superconducting magnetic energy storage (SMES) in integration with a static synchronous compensator (STATCOM) is capable of supplying power systems with both active and reactive powers simultaneously and very rapidly, and thus is able to enhance the security dramatically. In this paper the structure and characteristics of the STATCOM/SMES is proposed. In addition, using a proper control scheme, STATCOM/ SMES is tested on an IEEE 3-bus system and more effective performance of the presented STATCOM/SMES compensator is evaluated with alone STATCOM through the dynamic simulation by using PSCAD/EMTDC software.

Keywords: STATCOM/SMES, Oscillation Damping, Control, Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
2325 An Efficient Framework to Build Up Malware Dataset

Authors: Madihah Mohd Saudi, Zul Hilmi Abdullah

Abstract:

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

Keywords: Dataset, knowledge database discovery (KDD), malware, static and dynamic analyses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
2324 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules

Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur

Abstract:

In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.

Keywords: Subtractive clustering, fuzzy inference system, fault proneness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
2323 Membrane Distillation Process Modeling: Dynamical Approach

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati

Abstract:

This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.

Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
2322 A Generic and Extensible Spidergon NoC

Authors: Abdelkrim Zitouni, Mounir Zid, Sami Badrouchi, Rached Tourki

Abstract:

The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.

Keywords: Dynamic arbiter, Generic router, Spidergon NoC, SoC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2321 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition

Authors: Chuan Li, Ming Liang

Abstract:

Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.

Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2320 A Comparison between Hybrid and Experimental Extended Polars for the Numerical Prediction of Vertical-Axis Wind Turbine Performance using Blade Element-Momentum Algorithm

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.

Keywords: Darrieus wind turbine, Blade Element-Momentum Theory, extended airfoil database, hybrid database, Sandia 5-m wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560