

Abstract—In this paper, subtractive clustering based fuzzy

inference system approach is used for early detection of faults in the
function oriented software systems. This approach has been tested
with real time defect datasets of NASA software projects named as
PC1 and CM1. Both the code based model and joined model
(combination of the requirement and code based metrics) of the
datasets are used for training and testing of the proposed approach.
The performance of the models is recorded in terms of Accuracy,
MAE and RMSE values. The performance of the proposed approach
is better in case of Joined Model. As evidenced from the results
obtained it can be concluded that Clustering and fuzzy logic together
provide a simple yet powerful means to model the earlier detection of
faults in the function oriented software systems.

Keywords—Subtractive Clustering, Fuzzy Inference System,
Fault Proneness.

I. INTRODUCTION
ANY systems are delivered to users with excessive
faults. This is despite a huge amount of development

effort going into fault reduction in terms of quality control and
testing. It has long been recognized that seeking out fault-
prone parts of the system and targeting those parts for
increased quality control and testing is an effective approach
to fault reduction. A limited amount of valuable work in this
area has been carried out previously. Despite this it is difficult
to identify a reliable approach to identifying fault-prone
software components. Prediction of fault-prone modules
provides one way to support software quality engineering
through improved scheduling and project control. Quality of
software is increasingly important and testing related issues
are becoming crucial for software. Although there is diversity
in the definition of software quality, it is widely accepted that
a project with many defects lacks quality. Methodologies and
techniques for predicting the testing effort, monitoring process
costs, and measuring results can help in increasing efficiency
of software testing. Being able to measure the fault-proneness
of software can be a key step towards steering the software
testing and improving the effectiveness of the whole process.

Ramandeep S. Sidhu is doing M.Tech. CSE, RIEIT, Rail Majra, Punjab,

India.
Sunil Khullar is associated with RIEIT, Rail Majra, Punjab, India
Dr. R. P.S. Bedi is working as Joint Registrar, Punjab Technical

University, Jalandhar, India
Parvinder S. Sandhu is associated with Rayat-Bahra Institute of

Engineering & Bio-Technology, Sahauran, Mohali (India).
Kiranbir Kaur is associated with Guru Nanak Dev University, India

Predictive modeling is the process by which a model is
created or chosen to try to best predict the probability of an
outcome. The objective of a fault-proneness model is to
identify faulty classes and focus testing effort on them.

Fault-proneness of a software module is the probability that
the module contains faults. A correlation exists between the
fault-proneness of the software and the measurable attributes
of the code (i.e. the static metrics) and of the testing (i.e. the
dynamic metrics). Early detection of fault-prone software
components enables verification experts to concentrate their
time and resources on the problem areas of the software
system under development. Early lifecycle data includes
metrics describing unstructured textual requirement and static
code metrics. Various researches show that use of static code
metrics (such as Halstead complexity, Cyclomatic complexity,
McCabe’s complexity etc.) to measure quality is inefficient.
The use of single features of software to predict faults is
uninformative. Fenton offers an example where the same
program functionality is achieved using different
programming language constructs resulting in different static
measurements for that module [1]. Fenton uses this example
to argue the uselessness of static code attributes. However,
where single features fail, combinations can succeed [2].
Hence combinations of static features extracted from
requirements and code can be good predictors for identifying
modules that actually contains fault.

II. CLUSTERING
As a broad subfield of Fault Prediction, clustering is

concerned with the design and development of algorithms and
techniques that allow division of data in to different groups.
Clustering means to assign a set of observations in to different
groups (known as clusters), so that the observations are same
in some sense. At a general level, there are two types of
clustering: distance based and conceptual clustering. Distance
based clustering divides the data in to subsets on the basis of
distance. Conceptual clustering, cluster the data on the basis
of the similar concept the data will have.

An important component of a clustering algorithm is the
distance measure between data points. If the components of
the data instance vectors are all in the same physical units then
it is possible that the simple Euclidean distance metric is
sufficient to successfully group similar data instances. It is the
ordinary distance between two points that one would measure
with a ruler, which can be proven by repeated application of
the Pythagorean theorem. The major focus of clustering

Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur

A Subtractive Clustering Based Approach for
Early Prediction of Fault Proneness

in Software Modules

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:4, No:7, 2010

1165International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

95
5.

pd
f

research is to extract information from data automatically, by
computational and statistical methods. Hence, clustering is
closely related to data mining and statistics.

Many clustering methods aim at finding a single partition of
the collection of items into clusters. However, obtaining a
hierarchy of clusters can provide more flexibility and other
methods rather focus on this. A partition of the data can be
obtained from a hierarchy by cutting the tree of clusters at
some level. Most clustering methods were developed for
numerical data, but some can deal with categorical data or
with both numerical and categorical data [3].

The degree of membership of a data item to a cluster is
either in [0, 1] if the clusters are fuzzy or in {0, 1} if the
clusters are crisp. For fuzzy clusters, data items can belong to
some degree to several clusters that don’t have hierarchical
relations with each other. This distinction between fuzzy and
crisp can concern both the clustering mechanisms and their
results. Crisp clusters can always be obtained from fuzzy
clusters. Clusters can be seen either as distant compact sets or
as dense sets separated by low density regions. Unlike density,
compactness usually has strong implications on the shape of
the clusters, so methods that focus on compactness should be
distinguished from methods that focus on the density.
Clustering denotes changes in a system that enables a system
to do the same task more efficiently the next time. Clustering
is a method of unsupervised learning, in which one seeks to
determine how the data are organized [3]. Clustering
algorithms can be:

A. Hierarchical
A hierarchical algorithm creates a hierarchy of clusters

which may be represented in a tree structure called a
dendrogram. The root of the tree consists of a single cluster
containing all observations, and the leaves correspond to
individual observations. In hierarchical clustering algorithm, a
valid metric may be used as a measure of similarity between
pairs of observations. Algorithms for hierarchical clustering
are generally either agglomerative, in which one starts at the
leaves and successively merges clusters together; or divisive,
in which one starts at the root and recursively splits the
clusters [4].

B. Partitional
Partitional algorithms typically determine all clusters at

once. These algorithms divide data in to independent clusters
on the basis of distance measures [4]. A division data objects
into non-overlapping subsets (clusters) such that each data
object is in exactly one subset.

K-Means is an unsupervised clustering technique used to
classify data in to K clusters. It is partitional clustering
approach, each cluster is associated with a centroid (center
point), each point is assigned to the cluster with the closest
centroid, Number of clusters, K, must be specified [5].

Fuzzy C-Means (FCM) is a method of clustering which
allows one piece of data to belong to two or more clusters. It
processes n vectors in p-space as data input, and uses them, in
conjunction with first order necessary conditions for
minimizing the FCM objective functional, to obtain estimates

for two sets of unknowns. FCM clustering is used to build
fuzzy rule bases for fuzzy systems design; and there are
numerous applications of FCM in virtually every major
application area of clustering [6].

C. Spectral
Spectral clustering techniques make use of the spectrum of

the similarity matrix of the data to perform dimensionality
reduction for clustering in fewer dimensions [4]. The main
requirements that a clustering algorithm should satisfy are
scalability; dealing with different types of attributes;
discovering clusters with arbitrary shape; minimal
requirements for domain knowledge to determine input
parameters; ability to deal with noise and outliers; insensitivity
to order of input records; high dimensionality; interpretability
and usability [7].

Clustering techniques create applications that are rugged,
self-adapting, easier to maintain and often more fault tolerant
than conventional systems. An adaptive feedback loop can
tailor a system to changes in enterprise policies and make it
more resilient. Clustering deals with the issue of how to build
programs that improve their performance at some task through
clustered data [8].

In this present thesis work, Subtractive clustering based
Fuzzy Inference technique is experimented on different
models and comparative analysis is performed for the
prediction of faults in software systems.

III. METHODOLOGY PROPOSED
The proposed methodology will consist of the following

steps:
• First of all, find the requirement phase and

structural code attributes of software systems.
• Select the suitable metric values as representation

of statement
• Collect the metric data of requirement phase and

structural code attributes
• Perform the join of the structural and requirement

metric data and obtain the combined data.
• Analyze, refine metrics and normalize the metric

values.
• Find the suitable algorithm for clustering of the

software components into faulty/fault-free
systems.

Clustering can be a very effective technique to identify

natural groupings in data from a large data set, thereby
allowing concise representation of relationships embedded in
the data. In our study, clustering allows us to group software
modules into faulty and non-faulty categories hence allowing
for easier understandability.

Fuzzy logic is an effective paradigm to handle imprecision.
It can be used to take fuzzy or imprecise observations for
inputs and yet arrive at crisp and precise values for outputs.
Also, the Fuzzy Inference System (FIS) is a simple and

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:4, No:7, 2010

1166International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

95
5.

pd
f

commonsensical way to build systems without using complex
analytical equations.

Here, fuzzy logic will be employed to capture the broad
categories identified during clustering into a Fuzzy Inference
System (FIS). The FIS will then act as a model that will reflect
the relationship between the different input parameters [12].

A. Subtractive clustering
 Subtractive clustering, [13], is a fast, one-pass algorithm for
estimating the number of clusters and the cluster centers in a
set of data.
 This means that the computation is now proportional to the
problem size instead of the problem dimension. However, the
actual cluster centers are not necessarily located at one of the
data points, but in most cases it is a good approximation,
especially with the reduced computation this approach
introduces.
 Since each data point is a candidate for cluster centers, a
density measure at data point xi is defined as:

∑
= ⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

−
−=

n

j a

ji
i

r

XX
D

1
2

2

2

exp (1)

 Where ra is a positive constant representing a neighborhood
radius. Hence, a data point will have a high density value if it
has many neighboring data points.
 The first cluster center xc1 is chosen as the point having the
largest density value Dc1. Next, the density measure of each
data point xi is revised as follows:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

−
−−= 2

2

2

exp 1

1

b

ci
cii

r

XX
DDD (2)

 Where br is a positive constant which defines a
neighborhood that has measurable reductions in density
measure. Therefore, the data points near the first cluster center
xc1 will have significantly reduced density measure. After
revising the density function, the next cluster center is selected
as the point having the greatest density value. This process
continues until a sufficient number of clusters are obtained
[11].

B. Fuzzy Inference System
FIS is composed of inputs, outputs and rules. Each input

and output can have any number of membership functions.
The rules dictate the behavior of the fuzzy system based on
inputs, outputs and membership functions. Fuzzy Inference
System is constructed to capture the position and influence of
each cluster in the input space.

Each input attribute and output attribute has as many
membership functions as the number of clusters that
subtractive clustering algorithm has identified. The number of

rules will be equals the number of clusters.
If there are three rules generated then significance of the

first rule is that it succinctly maps cluster 1 in the input space
to cluster 1 in the output space. Similarly the other two rules
map cluster 2 and cluster 3 in the input space to cluster 2 and
cluster 3 in the output space. If a data point is closer to the
first cluster, or in other words having strong membership to
the first cluster, is fed as input to fuzzy inference system then
rule1 will fire with more firing strength than the other two
rules. Similarly, an input with strong membership to the
second cluster will fire the second rule will with more firing
strength than the other two rules and so on.

The output of the rules (firing strengths) are then used to
generate the output of the FIS through the output membership
functions [12].

IV. IMPLEMENTATION
Implementing the model and test the performance of the

model using following criteria:
The comparisons are made on the basis of the more

accuracy and least value of MAE and RMSE error values.
Accuracy value of the prediction model is the major criteria
used for comparison. The mean absolute error is chosen as the
standard error. The technique having lower value of mean
absolute error is chosen as the best fault prediction technique.

A. Mean Absolute Error
 Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases; it is the
average prediction error [9]. The formula for calculating MAE
is given in equation shown below:

n
cacaca nn −++−+− ...2211

(3)

B. Root Mean Squared Error
 RMSE is frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the thing being modeled or estimated
 [9]. It is just the square root of the mean square error as
shown in equation given below:

() () ()
n

cacaca nn
22

22
2

11 ... −++−+−

(4)

The mean-squared error is one of the most commonly used

measures of success for numeric prediction. This value is
computed by taking the average of the squared differences
between each computed value and its corresponding correct
value. The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error gives
the error value the same dimensionality as the actual and
predicted values.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:4, No:7, 2010

1167International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

95
5.

pd
f

V. RESULTS AND DISCUSSION
So, the real-time defect data sets used are taken from the

NASA’s MDP (Metric Data Program) data repository,
available online at [10]. The CM1 data is obtained from a
spacecraft instrument, written in C, containing approximately
505 modules. The PC1 data is collected from a flight software
system coded in C, containing 1107 modules.

After polishing of data the metrics used are product
requirement metrics and product module metrics and the
combination of requirement and module metrics.

The output of a software module is considered to be Error
count. Error count metric defines the number of defects that
can occur in a module. A zero error count for a software
module specifies that module is error free and a non-zero
number in this metric specifies the number of faults that can
occur in a module and that module is said to be fault prone.

Figure 1 shows the CM1 Graphical representation of details
of the output of software of the same metric from CM1
dataset.

457

36
6 3 2 1

0

50

100
150

200

250

300

350
400

450

500

LABEL

C
O

U
N

T

Fig. 1 CM1 Graphical details of the output of software Product

Module metric

Figure 2 shows the CM1 graphical details of the output of
software of combined metrics extracted from product module
metrics and product requirement metrics where label i.e. error
count is meant for output and is equal to the number of errors
and the count tells the number of occurrences of that label in
the CM1 data set.

183

56

11 9 4 3
0

20
40
60
80

100
120
140
160
180
200

LABEL

C
O

U
N

T

Fig. 2 CM1 Graphical details of the output of software of

Combination metrics

Figure 3 shows the PC1 graphical details of the output of

software Product Requirement metric where label and the
count tells the number of occurrences of that label in the PC1
data set.

1031

46 14 10 2 4
0

200

400

600

800

1000

1200

LABEL

C
O

U
N

T

Fig. 3 PC1 Graphical details of the output of software Product

Module metric

Figure 4 shows the PC1 details of the output of software of
combination of product module metric and product
requirement metric where label and the count tells the number
of occurrences of that label in the PC1 data set.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:4, No:7, 2010

1168International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

95
5.

pd
f

362

46
14 11

26
1

0

50

100

150

200

250

300

350

400

LABEL

C
O

U
N

T

Fig. 4 PC1 Graphical details of the output of software of Combination metric

The next step is to use subtractive clustering algorithm

based fuzzy Inference system approach for classification of
the software components into faulty/fault-free categories. The
proposed algorithm is applied on both CM1 and PC1 datasets
and performance is measured on both Code based and Joined
Model as shown in table 1.

TABLE I (A) PERFORMANCE OF THE SUBTRACTIVE CLUSTERING BASED

FUZZY INFERENCE SYSTEM

Performance
Criteria

DataSet
PC1 CM1

Code
Model

Joined
Model

Code
Model

Joined
Model

Accuracy 92.8765 96.0168 88.9558 100
MAE 0.0694 0.0199 0.1024 2.4 e-

016
RMSE 0.2618 0.0998 0.3137 1.03 e-

015

VI. CONCLUSION
Predicting faults early in the software life cycle can be used

to improve software process control and achieve high software
reliability. So, in this study, subtractive clustering based fuzzy
inference system approach is used for early detection of faults
in the function oriented software systems. This approach has
been tested with real time defect datasets of NASA software
projects named as PC1 and CM1. Both the code based model
and joined model of the datasets are used for training and
testing of the proposed approach.

In case of PC1 dataset, the joined or combine model of
requirement metrics and code based metrics is showing better
prediction capability with 96.01%, 0.0199 and 0.0998 as
Accuracy, MAE and RMSE values.

Similarly, in case of CM1 dataset, the joined or combine
model of requirement metrics and code based metrics is again
showing better prediction capability with 100%, 2.4e-16 and
1.03 e-15 as Accuracy, MAE and RMSE values respectively.
So, the performance of the proposed approach is better in case
of CM1 dataset’s Joined Model.

As evidenced from the results obtained it can be concluded

that Clustering and fuzzy logic together provide a simple yet
powerful means to model the earlier detection of faults in the
function oriented software systems.

REFERENCES
[1] Fenton N.E. and Pfleeger S.L. (1997), “Software Metrics: A Rigorous

and Practical Approach”. PWS publishing Company: ITP, Boston, MA,
2nd edition, pp.132-145.

[2] Jiang Y., Cukic B. and Menzies T. (2007), “Fault Prediction Using Early
Lifecycle Data”. ISSRE 2007, the 18th IEEE Symposium on Software
Reliability Engineering, IEEE Computer Society, Sweden, pp. 237-246.

[3] Nizar Grira, Michel Crucianu, Nozha Boujemaa, “Unsupervised and
Semi-supervised Clustering: a Brief Survey”, A Review of Machine
Learning Techniques for Processing Multimedia Content, Report of the
MUSCLE European Network of Excellence (6th Framework
Programme), 2005 URL:
www.rocq.inria.fr/~crucianu/src/BriefSurveyClustering.pdf

[4] http://en.wikipedia.org/wiki/Cluster_analysis
[5] Toon Calders, “Data Mining Clustering”, URL:

wwwis.win.tue.nl/~tcalders/teaching/.../slides/DM09-07-Clustering.pdf
[6] http://www.scholarpedia.org/article/Fuzzy_C-means_cluster_analysis
[7] home.dei.polimi.it/matteucc/Clustering/tutorial_html/
[8] scianta.com/technology/machinelearning.htm
[9] Challagulla, V.U.B. , Bastani, F.B. , I-Ling Yen , Paul,(2005)

“Empirical assessment of machine learning based software defect
prediction techniques”, 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, WORDS 2005, 2-4 Feb 2005,
pp. 263-270.

[10] http://mdp.ivv.nasa.gov
[11] Khaled Hammouda, “A Comparative Study of Data Clustering

Techniques”, SYDE 625: Tools of Intelligent Systems Design. Course
Project. Unpublished Aug 2000

[12] www.mathworks.com
[13] S. Chiu, "Fuzzy Model Identification Based on Cluster Estimation," J. of

Intelligent & Fuzzy Systems, Vol. 2, No. 3, 1994.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:4, No:7, 2010

1169International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

95
5.

pd
f

