
 

 

 
Abstract—To address the problem that the FM continuous-wave 

(FMCW) radar extracts human vital sign signals which are susceptible 
to noise interference and low reconstruction accuracy, a detection 
scheme for the sign signals is proposed. Firstly, an improved complete 
ensemble empirical modal decomposition with adaptive noise 
(ICEEMDAN) algorithm is applied to decompose the radar-extracted 
thoracic signals to obtain several intrinsic modal functions (IMF) with 
different spatial scales, and then the IMF components are optimized by 
a backpropagation (BP) neural network improved by immune genetic 
algorithm (IGA). The simulation results show that this scheme can 
effectively separate the noise, accurately extract the respiratory and 
heartbeat signals and improve the reconstruction accuracy and signal-
to-noise ratio of the sign signals. 
 

Keywords—Frequency modulated continuous wave radar, 
ICEEMDAN, BP Neural Network, vital signs signal. 

I. INTRODUCTION 

ITAL signs can indicate the severity and criticality of a 
patient's condition, and real-time detection of human sign 

information is significant in areas such as smart homes and 
smart healthcare [1]-[3]. Currently, available devices for 
contact detection of vital signs are large, costly, and complex to 
operate [4], while non-contact radar detection methods, in 
addition to their user-friendly advantages, provide an effective 
method for situations where optical imaging is obstructed, such 
as poorly lit sleeping environments and cramped spaces under 
wastelands caused by earthquake disasters [5]. Among the 
major non-contact radar detection technologies available today, 
Ultra-Wide Band (UWB) pulsed radar [6] is superior in terms 
of distance resolution and detection capability, but its complex 
structure leads to high cost. Continuous-wave (CW) radar [7] 
cannot measure distance and is susceptible to interference from 
echoes of surrounding moving targets. Compared with the 
above detection methods, the high-resolution and high-
precision FMCW [8]-[10] combines the advantages of 
continuous-wave and ultra-wideband radar with low power, 
high sensitivity, and high penetration, and can accurately 
measure the target and clutter characteristics, and provide the 
target's distance, velocity and angle information of the target. 

The vital signals obtained by radar include not only the 
signals of physical signs but also various kinds of clutter 
interference, and the respiratory harmonics will interfere with 
the frequency components of the heartbeat, and the higher-order 
harmonics of respiration will also be confused with the 
heartbeat signal, so the extraction and separation of 
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cardiopulmonary signals face a considerable challenge. The 
empirical mode decomposition (EMD) algorithm and BP neural 
network for vital sign signal detection scheme proposed in the 
literature [11] can extract respiratory and heartbeat signals, but 
due to the modal confounding and endpoint effects in the 
decomposition results of EMD, and the BP neural network is 
easy to fall into the local minimum resulting in the accuracy of 
the final optimized reconstructed signal is not satisfactory. To 
address the above problems, an ICEEMDAN algorithm is 
proposed to overcome the modal aliasing and decompose the 
signal more thoroughly and efficiently, which can effectively 
separate noise and accurately extract respiratory and heartbeat 
signals and the BP neural network is improved by IGA to 
overcome the local minimum, search for the global optimal 
solution, and optimize the intrinsic mode function (IMF) to 
achieve high accuracy detection and reconstruction of the sign 
signal under noise interference.  

II. FMCW RADAR DETECTION PRINCIPLE 

Human breathing and heartbeat cause regular movements of 
the chest cavity. The radar transmits electromagnetic wave 
signals through the antenna to the person to be tested, and the 
reflected echo from the surface of the chest cavity of the person 
to be tested contains background, redundant cluster, etc. The 
time-frequency diagram of the FMCW radar emission and echo 
signals is shown in Fig. 1. 
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Fig. 1 FMCW radar transmit signal and echo signal 
 

The transmit signal of the FMCW radar can be expressed as: 
 

2( ) cos(2 ( ))T T c

c

B
x t A f t t t

T
            (1) 
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where
T

A is the transmitting power and ( )t is the transmitter 

phase noise. Some relevant chirp parameters are defined as 
follows: 

cf is the chirp start frequency, B is the chirp signal 

bandwidth, 
f

T is the chirp signal period, iT is the transmit signal 

frame period, and cT is the chirp signal duration. 

We assume that ( )x t is the micro-motion displacement of the 

thorax,
0

d is the distance between the radar sensor and the body. 

Then, the distance between the thorax and the radar is

0
( ) ( )R t x t d  , the delay is 2 ( ) /

d
t R t c , and c is the speed 

of light. We express the signal received by the radar by: 
 

2( ) {cos(2 ( )) ( ) ( )}R R c d d d

c

B
x t A f t t t t t t

T
             (2) 

 
The transmit signal and the return signal are mixed through 

a quadrature I/Q channel, and then a low-pass filter is used to 

obtain the intermediate frequency (IF) signal of the radar ( )
IF

S t . 
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where, /
c

c f  is the wavelength of the millimeter wave, 
bf

is the IF signal frequency, ( )b t is the IF signal phase, and its 

expression is: 
 

2 ( )
b

c

BR t
f

cT
            (4) 

  
4 ( )

( )b

R t
t





            (5) 

 
The frequency and phase of the radar IF signal are 

proportional to the tiny motion of the chest surface, and analog 
to digital (A/D) sampling of the IF signal is performed to obtain 
the raw radar data. A distance dimensional Fourier transform, 
also called range fast Fourier transform (FFT), is performed on 
the n chirp signals from the radar to obtain a complex matrix M 
[m, n], where m is the number of Fourier points. Each column 
represents a distance unit, consisting of m units, where the unit 
with the largest magnitude is the measured object. The phase 
information of the target distance unit is extracted, and the 
phase deconvolution is performed to obtain ( )t , and obtain the 

differential signal, and the phase baseline drift due to hardware 
reasons is eliminated by phase differencing, and then the signal 
processing of  is performed to obtain the vital sign 

information. 

III. NOISE-RESISTANT VITAL SIGNS DETECTION SOLUTION 

DESIGN 

A. Noise-Resistant Separation Algorithm for Breathing and 
Heartbeat 

The application of FMCW radar for human vital sign 
detection inevitably involves noise such as background and 
redundant clutter. ICEEMDAN, as an improvement of 
CEEMDAN decomposition algorithm, can overcome the 
problems of noise residue after decomposition and false 
patterns at the early stage of decomposition, so its design can 
be applied to the detection of vital signs signals to achieve the 
extraction and separation of respiration and heartbeat signals, 
and the redundant noise can be removed. The algorithm is 
applied to the detection of millimeter-wave radar vital signs 
signal to achieve the separation of signal and noise in four steps. 
We define operator E(.) to represent the IMF component of the 
signal obtained by EMD decomposition, operator M(.) to 
represent the local average of the sought signal, ( ) ( )iW t  denotes 
the i th zero-mean Gaussian white noise added,

0 is the 

amplitude factor of the added noise, and . denotes the set 
total average of the sought signal. The input signal ( )x t is the 

original thoracic signal acquired by the radar. The specific 
implementation process of the algorithm is as follows. 
Step1. Gaussian white noise decomposed by EMD is added to 

the original thorax signal acquired by radar, for which 
the local mean and set total average are obtained for the 

first stage (k = 1) signal residual
1
r and the first-order 

model. 
 

( ) ( )
0 1( ) ( ) ( ( ))i ix t x t E W t           (6) 

 
( ) ( )

1 0 1( ) ( ( )) ( ( ) ( ( )))i ir t M r t M x t E W t        (7) 

 
( )

1 1 0 1( ) ( ) ( ) ( ( ) ( ( )))iIMF x t r t x t M x t E W t         (8) 

 
Step2. We continue to add the EMD-decomposed Gaussian 

white noise to the above residual signal, find its local 

means as the second stage (k = 2) residual 2r and find the 

second-order model. 
 

( )
2 1 1 2( ) ( ( ( )))ir t M r E W t          (9) 

 
( )

2 1 2 1 1 1 2( ) ( ) ( ) ( ( ( )))iIMF r t r t r t M r E W t         (10) 

 
Step3. For k = 3..., K calculates the kth residual.  

 
( )

1 1( ) ( ( ( )))i
k k k kr t M r E W t          (11) 

 
( )

1 1 1 1( ) ( ) ( ) ( ( ( )))i
k k k k k k kIMF r t r t r t M r E W t            (12) 

 

Step4. We repeat step 3 until the residual component ( )kr t is 

monotonic or can no longer be decomposed. If the 
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thoracic signal ( )x t can be decomposed into N IMF 

components, then ( )x t can be expressed as in: 

 

1

( ) ( ) ( )
N

k N
k

x t IMF t r t


          (13) 

 

The algorithm decomposes the raw chest signal ( )x t
acquired by the radar into several modal functions of different 
frequencies and a residual component. In general, the 
respiratory frequency of a healthy person ranges from 0.2 Hz to 
0.8 Hz, and the heart rate ranges from 0.8 Hz to 2 Hz. Therefore, 
by finding the spectral peaks of the decomposed IMF 
components, the components belonging to the respiratory signal 
and the components belonging to the heartbeat signal can be 
determined separately, and the rest is noise. 

B. IGA-BP to Extract Vital Signs Signals 

The ICEEMDAN algorithm can effectively separate noise 
and accurately extract respiration and heartbeat signals, but the 
separated IMF components suffer from endpoint effects and 
cannot avoid bias in reconstructing the target signal. To obtain 
IMF components with better performance, they must be 
optimized to improve reconstruction accuracy while 
maintaining signal characteristics. 

The application of neural networks for feature extraction is 
currently a widely adopted method. The topology of the BP 
neural network is shown in Fig. 2, and the basic idea of this 
network model is to use BP to analyze the deviation of the 
output and expectation of each training result, to dynamically 
adjust the weights and thresholds of each node, and finally to 
obtain a model whose output is consistent with the expected 
result, minimizing the sum of squares of the network deviation. 
Although this algorithm has good nonlinear mapping 
performance, its convergence speed is slow, the training 
network is unstable, and the modification rule of weights and 
thresholds is the fastest descent method, which also leads to the 
generation of multiple local minima making it into local minima 
and a long learning period [12]. Therefore, the application of 
the BP neural network to the vital signs radar signal 
decomposed using the ICEEMDAN algorithm to achieve the 
desired signal extraction still needs to overcome the above 
problems, for which the IGA-BP optimization strategy is 
proposed.  

IGA-BP is to introduce the IGA genetic algorithm into the 
BP neural network to screen out individuals with better 
environmental adaptation ability in each generation of genetic 
inheritance and use genetic reworking technique for crossover 
and variation to obtain a new set of approximate solutions to 
optimize the weights and thresholds of the BP neural network, 
which can not only avoid immature convergence, but also find 
the optimal solution in the global. The IGA-BP optimization 
strategy is shown in Fig. 3, and its flow is as follows. 
a) Build a BP neural network with initial network weights and 

thresholds. 
b) Sequentially encode the initial weights and thresholds of 

the network. 

c) Input the IMF dataset obtained from ICEEMDAN 
decomposition to train the BP neural network and find the 
fitness value of each chromosome based on the output error 
and fitness function. 

d) Select the individuals with higher fitness to perform the 
crossover variation operation and find the maximum 
fitness value of each generation. 

e) Reach the maximum evolutionary generation of the 
population and continue to perform the next optimization 
step, otherwise return to step c.  

f) Decode the optimal chromosome to obtain the optimal 
weight threshold and assign it to the BP neural network. 

g) Process the IMF data input in step c and give the optimal 
weight threshold to calculate the output deviation. 

h) Update the threshold of the network according to the 
deviations by the gradient descent algorithm. 

i) Reach the predetermined deviation accuracy or the 
proposed training number, the training is finished and the 
result is output, otherwise return to step g. 
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Fig. 2 BP neural network topology 
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Fig. 3 Workflow of BP neural network based on genetic algorithm 
 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Information Engineering

 Vol:16, No:8, 2022 

336International Scholarly and Scientific Research & Innovation 16(8) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 I

nf
or

m
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

8,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

64
2.

pd
f



 

 

The initial weights and thresholds of the neural network are 
optimized to finally achieve the goal of optimizing the IMF 
components decomposed by ICEEMDAN to improve the 
accuracy and precision of respiratory and heartbeat signal 
reconstruction. The optimized BP neural network improves the 
network performance and not only finds the global optimal 
solution but also improves the accuracy of parameter extraction. 

C. ICEEMDAN and IGA-BP Based Vital Signs Signal 
Detection Scheme 

In summary, the proposed ICEEMDAN algorithm enables 
the separation of sign signals and noise, and the initial 
extraction of respiratory and heartbeat signals. And the IGA-BP 
is used to further optimize the IMF components obtained from 
the decomposition, to achieve the high-precision reconstruction 
of the respiratory and heartbeat signals. In this regard, the 
process design of combining the ICEEMDAN algorithm and 
IGA-BP applied to FMCW radar detection of vital signs signals 
is shown in Fig. 4. As can be seen from the figure, the raw 
signals collected by the radar are processed by ICEEMDAN 
and IGA-BP to finally obtain the respiration and heartbeat 
signals with high accuracy. 
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Extracts the phase from the 
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Find Range bin according to 
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Phase unwrapping

Thoracic signals

ADC

ICEEMDAN

IMF1 IMF2 IMFn...
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The IMF fraction that 
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The IMF weight that 
belongs to the heartbeat

IGA-BP neural network 
to optimize IMF

IGA-BP neural network 
to optimize IMF

Breathing signal Heartbeat signal
 

Fig. 4 Vital signs detection system process 

IV. ANALYSIS OF SIMULATION RESULTS 

To suppress the effects of spectral noise and respiratory 
harmonics on the heartbeat signal and achieve high accuracy 
detection and reconstruction of the vital signs signal, the 

proposed ICEEMDAN combined with IGA-BP neural network 
radar detection scheme for vital signs signal is simulated and 
analyzed for verification. The 24 GHz millimeter wave radar 
module is used for chest data acquisition of indoor stationary 
targets. The specific parameters are shown in Table I. The 
experiments were performed by Python and MATLAB 
platform for signal processing and simulation analysis. 

 
TABLE I 

FMCW RADAR PARAMETERS 

Parameters Value 

Starting frequency
cf  24 GHz 

Bandwidth B  4 G 

Frame period
iT  50 ms 

Pulse duration
cT  50 us 

Number of samples per chirp 100 

A. Extraction of Vital Signs Signals 

The distance information can be obtained by doing FFT on 
the raw radar data in chirp. As shown in Fig. 5, each chirp signal 
emitted by the radar does 256 points FFT, and the range FFT 
results in 128 points FFT to get the 3D model map of 2D FFT. 
The maximum amplitude point in the figure is the location of 
the measured target, and the detection result shows that the 
target is at rest, and the distance from the radar is about 59 cm. 

 

 

Fig. 5 Radar target detection results 

B. Comprehensive Performance Analysis of Modal 
Decomposition Algorithm 

The five algorithms, EMD, EEMD, CEEMD, CEEMDAN 
and ICEEMDAN, are simulated and analyzed in terms of four 
evaluation metrics: number of components, orthogonality, 
number of parameters and running time, respectively, as shown 
in Table II. 

Comparing the data in Table II, it can be seen that EMD has 
the least human factor and better adaptivity, but poor 
orthogonality, while CEEMDAN and ICEEMDAN have good 
orthogonality and can effectively suppress modal mixing, 
although they have longer running time. Therefore, further 
simulation experiments on these two algorithms are conducted 
next to select the modal decomposition algorithm with the best 
separation effect and detection accuracy for subsequent 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Information Engineering

 Vol:16, No:8, 2022 

337International Scholarly and Scientific Research & Innovation 16(8) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 I

nf
or

m
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

8,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

64
2.

pd
f



 

 

experiments. 
 

TABLE II 
PERFORMANCE COMPARISON OF DIFFERENT DECOMPOSITION ALGORITHMS 

Algorithm 
Number of 
components 

Orthogonality 
Number of 
parameters 

Running 
time/s

EMD 7 1.192 1 1.042 

EEMD 9 0.147 3 24.907 

CEEMD 10 0.628 3 16.359 

CEEMDAN 11 0.071 4 30.525 

ICEEMDAN 9 0.025 4 32.618 

C. Separation of Vital Signs Signals 

Fig. 6 shows the heartbeat signal and its spectrum collected 
by the contact fingertip sensor as the reference signal for this 
experiment, which is compared with the heartbeat signal 
spectrum obtained from the decomposition of the CEEMDAN 
algorithm and ICEEMDAN algorithm to verify the superiority 
of the ICEEMDAN algorithm. As shown in Fig. 7, the 
CEEMDAN decomposition is performed to decompose the 
radar differential signal into 11 IMF components, at the early 
stage of signal decomposition, due to the existence of 
"spurious" modes, making the previous order mode contain a 
lot of noise and similar scales, and the decomposed IMF still 
contains residual noise, Fig. 8 shows the decomposition of 
ICEEMDAN yields 9 IMF components with higher 
decomposition efficiency and more single frequency, less 
clutter, and more concentrated energy. Separate FFT of the 
decomposed IMF components can be obtained with the 
corresponding spectrum, according to the spectrum peak 
judgment belongs to the IMF components of breathing and 
heartbeat, and the rest are noise interference components. 

 

 

(a) Time domain        (b) Frequency domain 

Fig. 6 Heartbeat reference signal 
 

The respiration and heartbeat signal spectra separated by the 
two algorithms are shown in Figs. 9 and 10, respectively. The 
respiration frequency obtained by the CEEMDAN 
decomposition method is 0.5869 Hz and the heartbeat 
frequency is 1.317 Hz, while the respiration frequency obtained 
by the ICEEMDAN decomposition method is 0.5869 Hz and 
the heartbeat frequency is 1.231 Hz. A comparison with the 
reference heartbeat frequency of 1.241 Hz in Fig. 6 (b) shows 
that the heartbeat signal extracted from the CEEMDAN 
decomposition results has a larger error, while the heartbeat 
signal extracted from the ICEEMDAN decomposition results is 
more accurate, with an error of only 1% compared to the results 

collected by the contact fingertip sensor. 
 

 

Fig. 7 CEEMDAN decomposition results 
 

 

Fig. 8 ICEEMDAN decomposition results 
 

 

(a) Heartbeat signal spectrum     (b) Respiratory signal spectrum 

Fig. 9 CEEMDAN signal spectrum 
 

A
m

p
lit

u
d

e

0 1 2 3

Frequency(Hz)

0

2

4

6

8

10

12

14

1.241

0 20 40 60 80 100 120

Time(s)
0 1 2 3

Frequency(Hz）

IM
F

1
IM

F
2

IM
F

3
IM

F
4

IM
F

5
IM

F
6

IM
F

7
IM

F
8

IM
F

9
re

s

World Academy of Science, Engineering and Technology
International Journal of Electrical and Information Engineering

 Vol:16, No:8, 2022 

338International Scholarly and Scientific Research & Innovation 16(8) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 I

nf
or

m
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

8,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

64
2.

pd
f



 

 

 

(a) Heartbeat signal spectrum    (b) Respiratory signal spectrum 

Fig. 10 ICEEMDAN signal spectrum 

D. Reconstructing Vital Signs Signals 

 

(a) Respiratory signal reconstructed by FFT 
 

 

 (b) Heartbeat signal reconstructed by FFT 
 

 

(c) IGA-BP optimized respiratory signal 
 

 

(d) IGA-BP optimized heartbeat signal 

Fig. 11 IGA-BP comparison before and after optimization 
 
The ICEEMDAN algorithm can achieve the separation of 

respiration, heartbeat, and noise signals, but the separated IMF 
components suffer from problems such as endpoint effects and 
cannot avoid errors when performing target signal 
reconstitution. To be able to obtain the IMF component with 
better performance, the proposed IGA-BP strategy to optimize 
the IMF performance is compared with the results before 

optimization as shown in Fig. 11. Figs. 11 (a) and (b) show the 
respiration and heartbeat signals reconstructed directly 
according to the spectrum peak, and (c) and (d) show the 
respiration and heartbeat signals reconstructed after the 
optimization of the IGA-BP strategy, respectively. From the 
waveforms, there are more spurious components and unclear 
features in the sign signals before optimization, and the 
endpoint effect still exists. In contrast, the waveforms 
optimized with the IGA-BP strategy can clearly reflect the 
characteristics of the respiratory and heartbeat signals and can 
well solve the shortage of end-jump. 

E. Signal to Noise Ratio Comparison 

The results and signal-to-noise ratios of the five subjects' 
vital signals acquired at 0.4 m, 0.6 m, and 1.2 m from the radar 
to perform ICEEMDAN decomposition, direct reconstruction, 
and IGA-BP optimization followed by reconstruction according 
to the spectrum analysis results are shown in Tables III-VI. 
SNR1 and SNR2 in the tables represent the signal-to-noise 
ratios of the respiratory and heartbeat signals respectively. 

The signal-to-noise ratio is defined as follows: 
 

2

2 2

( )
=10lg

( ) ( )

s l
SNR

s f s l

 
   

      (14) 

 

where ( )s l  is the peak of the spectrum of the signal, 
2
( )s f  

is the energy sum of the entire signal spectrum. 
 

TABLE III 
RESPIRATORY AND HEARTBEAT SIGNAL RESULTS AFTER FFT AND IGA-BP 

RECONSTRUCTION AT 0.4 M 

Experimenter Method 
Breathing 
rate /Hz 

SNR1 
/dB 

Heart rate /Hz 
SNR2 
/dB

A 
FFT 0.31 -4.09 1.26 -7.36 

IGA-BP 0.31 -3.45 1.24 -4.78 

B 
FFT 0.54 -6.93 1.16 -5.83 

IGA-BP 0.48 -7.18 1.16 -6.36 

C 
FFT 0.42 -5.68 1.08 -4.84 

IGA-BP 0.45 -3.26 1.12 -3.32 

D 
FFT 0.25 -2.13 0.98 -10.73 

IGA-BP 0.32 -1.52 1.40 -8.15 

E 
FFT 0.37 -7. 84 1.37 -5.89 

IGA-BP 0.37 -9.16 1.37 -5.16 

 
TABLE IV 

RESPIRATORY AND HEARTBEAT SIGNAL RESULTS AFTER FFT AND IGA-BP 

RECONSTRUCTION AT 0.6 M 

Experimenter Method 
Breathing 
rate /Hz 

SNR1 
/dB 

Heart rate /Hz 
SNR2 
/dB

A 
FFT 0.31 -4.09 1.26 -7.36 

IGA-BP 0.31 -3.45 1.24 -4.78 

B 
FFT 0.54 -6.93 1.16 -5.83 

IGA-BP 0.48 -7.18 1.16 -6.36 

C 
FFT 0.42 -5.68 1.08 -4.84 

IGA-BP 0.45 -3.26 1.12 -3.32 

D 
FFT 0.25 -2.13 0.98 -10.73 

IGA-BP 0.32 -1.52 1.40 -8.15 

E 
FFT 0.37 -7. 84 1.37 -5.89 

IGA-BP 0.37 -9.16 1.37 -5.16 
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TABLE VI 
RESPIRATORY AND HEARTBEAT SIGNAL RESULTS AFTER FFT AND IGA-BP 

RECONSTRUCTION AT 1.2 M 

Experimenter Method 
Breathing 
rate /Hz 

SNR1 
/dB 

Heart rate /Hz 
SNR2 
/dB

A 
FFT 0.31 -4.09 1.26 -7.36 

IGA-BP 0.31 -3.45 1.24 -4.78 

B 
FFT 0.54 -6.93 1.16 -5.83 

IGA-BP 0.48 -7.18 1.16 -6.36 

C 
FFT 0.42 -5.68 1.08 -4.84 

IGA-BP 0.45 -3.26 1.12 -3.32 

D 
FFT 0.25 -2.13 0.98 -10.73 

IGA-BP 0.32 -1.52 1.40 -8.15 

E 
FFT 0.37 -7. 84 1.37 -5.89 

IGA-BP 0.37 -9.16 1.37 -5.16 

 

Comparing the experimental data, the signal-to-noise ratio of 
respiratory and heartbeat signals reconstructed by the IGA-BP 
method is significantly improved compared with that of the FFT 
direct reconstruction method, with an average increase of 1.24 
dB for respiratory signals and 2.05 dB for heartbeat signals. 

V. CONCLUSION 

Aiming at the problems of spectral noise and harmonic 
interference in the detection of vital signs signals by FMCW 
radar and the low accuracy of reconstruction of signs signals, 
the ICEEMDAN combined with the IGA-BP neural network is 
proposed as a radar detection scheme for vital signs signals. The 
experimental simulation results show that this scheme can 
effectively separate the noise and accurately detect the human 
breathing and heartbeat signals, and the comparison results with 
contact instruments show that the heartbeat detection error is 
only 1%. The reconstructed signals after IGA-BP optimization 
have a good signal-to-noise ratio and improve the accuracy of 
the signal reconstruction, among which, the signal-to-noise 
ratio of respiration and heartbeat signals are improved by 1.24 
dB and 2.05 dB on average. 
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