Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 53

Search results for: Lagrange

53 Element-Independent Implementation for Method of Lagrange Multipliers

Authors: Gil-Eon Jeong, Sung-Kie Youn, K. C. Park

Abstract:

Treatment for the non-matching interface is an important computational issue. To handle this problem, the method of Lagrange multipliers including classical and localized versions are the most popular technique. It essentially imposes the interface compatibility conditions by introducing Lagrange multipliers. However, the numerical system becomes unstable and inefficient due to the Lagrange multipliers. The interface element-independent formulation that does not include the Lagrange multipliers can be obtained by modifying the independent variables mathematically. Through this modification, more efficient and stable system can be achieved while involving equivalent accuracy comparing with the conventional method. A numerical example is conducted to verify the validity of the presented method.

Keywords: Element-independent formulation, non-matching interface, interface coupling, methods of Lagrange multipliers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
52 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Newton interpolation, Lagrange interpolation, linear complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300
51 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan

Abstract:

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
50 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong

Abstract:

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
49 The Lower and Upper Approximations in a Group

Authors: Zhaohao Wang, Lan Shu

Abstract:

In this paper, we generalize some propositions in [C.Z. Wang, D.G. Chen, A short note on some properties of rough groups, Comput. Math. Appl. 59(2010)431-436.] and we give some equivalent conditions for rough subgroups. The notion of minimal upper rough subgroups is introduced and a equivalent characterization is given, which implies the rough version of Lagranges Theorem.

Keywords: Lower approximations, Upper approximations, Rough sets, Rough groups, Lagrange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
48 Lagrange-s Inversion Theorem and Infiltration

Authors: Pushpa N. Rathie, Prabhata K. Swamee, André L. B. Cavalcante, Luan Carlos de S. M. Ozelim

Abstract:

Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.

Keywords: Green-Ampt Equation, Lagrange's Inversion Theorem, Talsma-Parlange Equation, Three-Parameter Infiltration Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
47 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach

Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi

Abstract:

Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.

Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
46 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
45 Using Lagrange Equations to Study the Relative Motion of a Mechanism

Authors: R. A. Petre, S. E. Nichifor, A. Craifaleanu, I. Stroe

Abstract:

The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program.

Keywords: Lagrange equations, relative motion, inertial or non-inertial reference frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
44 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles

Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien

Abstract:

ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.

Keywords: Aerodynamic lens AL, divergent nozzle DN, ANSYS Fluent, Lagrange approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
43 A Meshfree Solution of Tow-Dimensional Potential Flow Problems

Authors: I. V. Singh, A. Singh

Abstract:

In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.

Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
42 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
41 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-Lobatto- Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D Elastodynamic Problems, Lagrange Polynomials, G-L-Lquadrature, Decoupled SBFEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
40 Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization

Authors: Wan-Hyun Cho, In-Seop Na, Seong-ChaeSeo, Sang-Kyoon Kim, Soon-Young Park

Abstract:

In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.

Keywords: Image defogging, Image restoration, Atmospheric veil, Transmission, Variational approach, Euler-Lagrange equation, Image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
39 Dynamics of Mini Hydraulic Backhoe Excavator: A Lagrange-Euler (L-E) Approach

Authors: Bhaveshkumar P. Patel, J. M. Prajapati

Abstract:

Excavators are high power machines used in the mining, agricultural and construction industry whose principal functions are digging (material removing), ground leveling and material transport operations. During the digging task there are certain unknown forces exerted by the bucket on the soil and the digging operation is repetitive in nature. Automation of the digging task can be performed by an automatically controlled excavator system, which is not only control the forces but also follow the planned digging trajectories. To develop such a controller for automated excavation, it is required to develop a dynamic model to describe the behavior of the control system during digging operation and motion of excavator with time. The presented work described a dynamic model needed for controller design and which is derived by applying Lagrange-Euler approach. The developed dynamic model is intended for further development of an automated excavation control system for light duty construction work and can be applied for heavy duty or all types of backhoe excavators.

Keywords: Backhoe excavator, controller, digging, excavation, trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162
38 Dynamic Modeling of Underwater Manipulator and Its Simulation

Authors: Ruiheng Li, Amir Parsa Anvar, Amir M. Anvar, Tien-Fu Lu

Abstract:

High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work

Keywords: Manipulator System, Robot, AUV, Denavit- Hartenberg method Lagrange theorem, MALTAB, ADAMS, Direct and Inverse Kinematics, Dynamics, PD Control-law, Interlink Force Sensing ResistorTM, intelligent artificial skin system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3121
37 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
36 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: Audit fee, heteroscedasticity, Lagrange multiplier test, periodicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 400
35 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong

Abstract:

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

Keywords: Vorsyl separator, separation efficiency, CFD, split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
34 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions

Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami

Abstract:

An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.

Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
33 Transformations between Bivariate Polynomial Bases

Authors: Dimitris Varsamis, Nicholas Karampetakis

Abstract:

It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.

Keywords: Bivariate interpolation polynomial, Polynomial basis, Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
32 Stroke Extraction and Approximation with Interpolating Lagrange Curves

Authors: Bence Kővári, ZSolt Kertész

Abstract:

This paper proposes a stroke extraction method for use in off-line signature verification. After giving a brief overview of the current ongoing researches an algorithm is introduced for detecting and following strokes in static images of signatures. Problems like the handling of junctions and variations in line width and line intensity are discussed in detail. Results are validated by both using an existing on-line signature database and by employing image registration methods.

Keywords: Stroke extraction, spline fitting, off-line signatureverification, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
31 Partial Derivatives and Optimization Problem on Time Scales

Authors: Francisco Miranda

Abstract:

The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.

Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
30 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: Ride comfort, air spring, bus, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
29 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: Sliding mode control, bus model, air suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
28 Response of a Bridge Crane during an Earthquake

Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale

Abstract:

During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.

Keywords: Earthquake, bridge crane, heterogeneous asynchronous time-integrator, impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
27 2-D Ablated Plasma Production Process for Pulsed Ion Beam-Solid Target Interaction

Authors: Thanat Rungsirathana, Vorathit Rungsetthaphat, Shogo Azuma, Nobuhiro Harada

Abstract:

This paper presents a 2-D hydrodynamic model of the ablated plasma when irradiating a 50 μm Al solid target with a single pulsed ion beam. The Lagrange method is used to solve the moving fluid for the ablated plasma production and formation mechanism. In the calculations, a 10-ns-single-pulsed of ion beam with a total energy density of 120 J/cm2, is used. The results show that the ablated plasma was formed after 2 ns of ion beam irradiation and it started to expand right after 4-6 ns. In addition, the 2-D model give a better understanding of pulsed ion beam-solid target ablated plasma production and expansion process clearer.

Keywords: Ablated plasma, pulse ion beam, thin foil solid target, two-dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
26 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
25 Control of Pendulum on a Cart with State Dependent Riccati Equations

Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha

Abstract:

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
24 CFD Simulations of a Co-current Spray Dryer

Authors: Saad Nahi Saleh

Abstract:

This paper presents the prediction of air flow, humidity and temperature patterns in a co-current pilot plant spray dryer fitted with a pressure nozzle using a three dimensional model. The modelling was done with a Computational Fluid Dynamic package (Fluent 6.3), in which the gas phase is modelled as continuum using the Euler approach and the droplet/ particle phase is modelled by the Discrete Phase model (Lagrange approach).Good agreement was obtained with published experimental data where the CFD simulation correctly predicts a fast downward central flowing core and slow recirculation zones near the walls. In this work, the effects of the air flow pattern on droplets trajectories, residence time distribution of droplets and deposition of the droplets on the wall also were investigated where atomizing of maltodextrin solution was used.

Keywords: Spray, CFD, multiphase, drying, droplet, particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664