
Abstract—The incidences of dengue hemorrhagic disease (DHF) 
over the long term exhibit a seasonal behavior.  It has been 
hypothesized that these behaviors are due to the seasonal climate 
changes which in turn induce a seasonal variation in the incubation 
period of the virus while it is developing the mosquito. The standard 
dynamic analysis is applied for analysis the Susceptible-Exposed-
Infectious-Recovered (SEIR) model which includes an annual 
variation in the length of the extrinsic incubation period (EIP). The 
presence of both asymptomatic and symptomatic infections is 
allowed in the present model. We found that dynamic behavior of the 
endemic state changes as the influence of the seasonal variation of 
the EIP becomes stronger. As the influence is further increased, the 
trajectory exhibits sustained oscillations when it leaves the chaotic 
region.

Keywords—Chaotic behavior, dengue hemorrhagic fever, 
extrinsic incubation period, SEIR model. 

I. INTRODUCTION

URVEILLANCE of a variety of diseases has established that 
a regular seasonal variation in the incidences of the 

diseases is the rule, rather than the exception. Dowell [1] 
classifies the causes of seasonality into three categories; host-
behavior changes, environmental changes and pathogen 
appearance and disappearance.  One of the first seasonal 
variations to be observed was the rise and fall of measles 
deaths in London from 1703 onwards [2]. Environmental 
changes may lead to seasonal changes in the host physiology. 
Nelson and Drazen [3] found that the hormone, melatonin 
mediates a seasonal adjustment in the immune function. The 
melatonin secretion occurs nocturnally since the absence of 
light terminates the retina-mediated suppression of the pineal 
sympathetic activity and so the melatonin secretions are the 
highest in the late fall or winter seasons. Dowell et al. [4] 
pointed out that seasonal variation in the incidence of invasive 
pneumococcal disease correlates with the seasonal variation in 
the photoperiod (hours of darkness). For the arboviral disease, 
climatic factors are very important since the development of 
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the mosquito and of the virus is affected by these factors.  For 
instance, the temperature must be above 200 C, the threshold 
temperature below which the dengue virus can not reproduce 
in the mosquitoes [5]. Many people have also noted that the 
mosquito population increases drastically with the onset of 
heavy rainfalls.  It has even been suggested that El Nino or La 
Nina may even be responsible [6] for the variation of some 
diseases. In this paper, we are interested in the effect of 
seasonality in the rain and temperature on the incidence of the 
dengue hemorrhagic disease.  

Dowell [1], point out that the seasonal variations should be 
distinguished from periodic large epidemics as observed every 
two years for measles [7].  Explanation for the superannual 
cycle in the measles incidence rate is given in the study of 
Ferguson et al. [8] on the effects of a seasonal variation in the 
contact rate in a SEIR model for the transmission of measles. 
As one of the parameters in the seasonal varying contact rate 
is increased, the model begins to exhibit a complex bifurcation 
structure, with chaotic attractors and repellors in some regions 
of the parameter space. Ferguson et al. obtained a bifurcation 
plot containing chaotic bands that starts as a single limit cycle 
which undergoes period-doubling bifurcation leading to the 
next chaotic band. The period of the limit cycle is increased 
by one year after leaving each chaotic band.

It is the purpose of the present paper to study the 
transmission of dengue hemorrhagic fever (DHF) when there 
is a seasonal change in the length of the extrinsic incubation 
period (EIP) of the dengue virus when it is in the mosquito. 
As is known, the EIP becomes longer as the mean daily 
temperature is lowered. The temperature dependence of the 
incubation period  versus T looks like a hyperbola with  = 3 
days when the temperature is 32 0C and 14 days when it is     
20 0C [9]. In Section II, we introduce the model and find two 
equilibrium states, a disease free state and an endemic state. 
We briefly review the stability conditions for the endemic 
state in Section III. In Section IV, we numerically solve the set 
of differential equations in the model using values of the 
parameters, which are biologically based. We obtain a 
bifurcation plot using the amplitude of the annual variation of 
the length of the EIP as the index parameter. 

II. THE TRANSMISSION MODEL

To formulate a transmission model for dengue disease, one 
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needs to know what the disease is and what the transmission 
cycle is. Dengue hemorrhagic fever (DHF) is a more virulent 
form of dengue fever (DF), which is a rather benign febrile 
illness. DHF is characterized by the manifestation of plasma 
leakage, which if severe enough, leads to shock and possible 
to death. DF is an old disease, being mentioned in a Chinese 
encyclopedia published in the Chin Dynasty (265 to 420 AD). 
DHF first appeared in 1958 in the Philippines and since then, 
it has become the most important of the arboviral disease [10]. 
Both DF and DHF are caused by an infection by dengue virus 
(DV), of which there are four serotypes;DEN-1, DEN-2, 
DEN-3 and DEN-4. Infection by one DEN-serotype provides 
lifelong immunity to the infecting serotype.

Dengue hemorrhagic fever usually occurs when a person 
who has the antibodies to one serotype of the DV is infected 
by another serotype of the virus. According to the secondary 
infection hypothesis (or antibody-dependent enhancement 
hypothesis) [11], the preexisting heterogonous dengue virus 
antibody recognizes the infecting virus and forms an antigen-
antibody complex. This complex attaches to the 
immunoglobulin Fc receptors on the cell membrane of the 
leukocytes. Because the antibody is heterogonous, it does not 
neutralize the new virus but instead allows it to invade the 
leukocyte. This virus is free to replicate itself within the cells. 
These infected cells, it is believed, produce and secrete 
vasoactive mediators, which causes in the vascular 
permeability, leading to increased plasma leakage. 

The infection by any DV in the human begins when an 
infectious mosquito bites a human and injects a large number 
of the DV of one serotype into the blood of the human. There, 
the virus causes either a symptomatic or an asymptomatic 
infection in the person. The latter type of infections is more 
common than the former infection. Burke et al. [12] estimates 
that 87 % of dengue infections in one study in Thailand were 
either mild or asymptomatic. Within a year of an DEN-1 
epidemic in Cuba in 1977 [13], 44.6 % of the population in 
Cuba had the antibodies to DEN-1 virus even though the 
reported number of confirmed DF illness in Cuba during the 
year was much less.  The illness results from the former 
infection last for about one to two weeks. During this time, the 
infected person is immune to further infection by any of the 
four DV serotype. After the person recovers, he keeps his 
immunity to the infecting serotype but losses the temporary 
immunity he had to the other serotypes. If a susceptible 
mosquito bites a person while he has a high count of virus in 
his blood, the susceptible mosquito can become infected. It 
then takes from 3 to 14 days (the incubation period) for the 
virus to develop inside the mosquito before infectious, i.e., 
able to transmit the disease to a human by its bite.

Whether the epidemic can sustain itself and become 
endemic depends on a number called the basic reproduction 
number. It is the number of secondary infections, which can 
results from primary infection. Calling the number R, the 
disease will be self sustaining if R > 1 and will die out if R 
1. This number can be determined as follows: If b is the biting 

rate (per day) of the mosquito and '
vI  is the number of 

infected mosquitoes, then b '
vI   is the total number of bites 

made by the infected mosquitoes each day. 
cN

S

T

'
 is the 

fraction of these bites which are delivered to susceptible 
humans (with S  being the number of susceptible humans, c, 
number of other animals the mosquitoes can bite and NT, the 
total number of humans). We multiply the product of the two 
terms by a and s, where a and s are the probability that the 
virus survives in the asymptomatic and symptomatic 
infectious humans, respectively. We have the number of bites 
by all mosquitoes that will result in new infections in the 
humans.  Since some infected mosquitoes are not infectious 
(i.e. those in the EIP), they should not be included in the 
number b '

vI . If a is the percentage of infected mosquitoes 

which are not infectious, then the number a '
vI should be 

subtracted from the total number of infected mosquitoes, 
leading the total number of infectious bites delivered to human 
and become asymptomatic infectious human to be 

'
v

T

a IS
cN
a)(1b

. Similarly, '
v

T

s IS
cN
a)(1b

 is the total 

number of infectious bites delivered to human and become 
symptomatic infectious human. We assume that the 
probabilities that the virus survives in the asymptomatic and 
symptomatic infectious humans are different. Setting c = 0, 
i.e., no other animals are present, these two terms become 

v
T

v
a IS

N
)(A/

a)(1b  and v
T

v
s IS

N
)(A/

a)(1b ,

respectively, where S and Iv are the population densities. 

T

v
a N

)(A/
a)(1b and

T

v
s N

)(A/
a)(1b  are the 

probability per day that the infection will be transmitted from 
a mosquito to a human and he becomes an asymptomatic and 
symptomatic infectious human, respectively. 
Next, we note that '

vSb is the total number of bites that is 

made by susceptible mosquitoes ( '
vS being the number of 

susceptible mosquitoes). 
cN

I

T
 is the probability that these 

bites are made on infected humans ( I  being the number of 
infected humans). The product of these two when multiplied 
by v (the probability that the virus will survive in the 
mosquito after it is transmitted from the human) gives 

'
vvISb  as the number of bites by all mosquitoes that will 

lead to infectious in the mosquitoes. Dividing this by the total 
number of mosquitoes, we get for the probability that a bite by 
a mosquito on an infected human result in the mosquito 

becomes infected is vvISb . Multiplying the product of these 
two probabilities by the mean life times of the humans and 
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mosquitoes, we get the total number of secondary infections 
arising from a single primary infection, or basic reproduction 
number                                             

r)(
a))m(1(b

R
hv

sa
2

                   (1) 

A. The Transmission Model 
To describe the transmission of dengue disease, we 

formulate the mathematical model by dividing the human 
populations into four classes, susceptible, asymptomatic 
infectious, symptomatic infectious and recovered humans. We 
assume that both asymptomatic and symptomatic infectious 
humans can transmit dengue virus to the susceptible vector. 
The vector populations are separated into two classes, 
susceptible and infectious vector populations.  The susceptible 
human ( S ) must already be carrying antibodies to one of the 
other serotypes of the DV. The antibodies may be the result of 
either symptomatic or asymptomatic infections. Asymptomatic 
and symptomatic infectious humans are the persons who are 
transmitted dengue virus from the infectious vector and can 
transmit dengue virus to the susceptible human. Recovered 
person is the infected person after the viremia stage until after
they recover from dengue virus infection.

Let
(t)S denotes the number of susceptible human at time t, 

(t)E '  denotes the number of asymptomatic infectious 

human at time t,  
(t)I '  denotes the number of symptomatic infectious human 

at time t,  
(t)R  denotes the number of recovered human at time t,  

(t)S'v denotes the number of susceptible vector population 
at time t, 

(t)I'v  denotes the number of infected vector population at 
time t. 

The time rate of change in the number of subjects in each 
class is equal to the number of subjects entering into the group 
per unit time minus the number leaving the group per unit 
time. This gives 

SISa)(1
N

)b(NS
dt
d

h
'
v

T

sa
T ,               (2a)

'
h

'
v

T

a' r)E(ISa)(1
N
b

E
dt
d ,                                 (2b)

'
h

'
v

T

s' r)I(ISa)(1
N
b

I
dt
d ,                                   (2c) 

R)IEr(R
dt
d

h ,                                              (2d) 

for the changes in the human population categories. In writing 
the above equation, we note that the susceptible humans 
become infected only if they are bitten by an infectious 
mosquito and not by an infected but not infectious mosquito. 

'
va)I(1 is the number of infectious mosquitoes (see 

discussion at the end of previous section). For the mosquito 
population categories, we have 

'
vv

'
v

T

v'
v S)IE(S

N
b

AS
dt
d (3a)

and '
v

''
v

T

v'
v I)IE(S

N
b

I
dt
d

v                            (3b) 

In the equations above, A is the recruitment rate of female 
mosquitoes; )( vh , the death rate of the humans 
(mosquitoes); , the human birth rate and r is the rate at 
which the infected human recovers. 
 Dividing the human class by total human population and 
the mosquito classes by the total mosquito populations, we get 
the densities for each class. We also have     S + I + R = 1 and 
Sv + Iv = 1 where the absence of the prime denotes a density. 
Because of these two constrains, only three equations are 
needed to define the model, i.e., 

S)SI(-S
dt
d

hvsa ,                                     (4a)

r)E(SIE
dt
d

hva ,                                           (4b)

r)I(SII
dt
d

hvs ,                                             (4c) 

and

vvvvv II))(EI-(1I
dt
d                             (4d) 

where vbv                                            (5a)
and a)m(1b aa , a)m(1b ss

with        m   =   
T

v
N

)/A(
                                              (5b) 

B. Equilibrium States and Their Stabilitys 
The equilibrium states are obtained by setting the RHS of 

eqns. (4a) to (4d) to  zero.  Doing this, we get two equilibrium 
states, the disease free state, '

0E  = (1, 0, 0, 0) and the endemic 

equilibrium state, E1 = (S*, E*, I*, *
vI )

where
MR
MS* ,                                      (6a)                   

MR)(
1)-(R

R
R

E a* ,                             (6b)                   

MR)(
1)-(R

R
R

I s* ,                                (6c)                  

M)(
1)-(R

R
I*

v                                       (6d)

where ,
b

v

v ,
r

M
h

h

r)(
a)m(1b

R
hv

va
2

a ,
r)(

a)m(1b
R

hv

vs
2

s
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and

r)(
a)m(1)(b

R
hv

vsa
2

                           (6e)   

The local stability of an equilibrium state is determined 
from the Jacobian (gradient) matrix of the RHS of equations 
(4a)-(4d) evaluated at the equilibrium state. If all eigenvalues 
(obtained by diagonalizing the Jacobian matrix) have negative 
real parts, then the equilibrium state is locally asymptotically 
stable. Diagonalizing the Jacobian for the endemic 
equilibrium  state,  we  find  that  the  characteristic equation 
is;

0)aaa)(M( 01
2

2
3

h           (7) 
where

MR
)R(M

M
))RM(M(

a vh
2

MR
))1)(RM(R(R

M
)M(MR

a vh
22

h
1

v
2
h0 1)-M(Ra                                                    (8) 

It can be seen that one eigenvalue has negative real part. 
The other eigenvalues have negative real part if it satisfies the 
Routh-Hurwitz criteria [14], that is                                      

0a0,a 12   and 012 aaa             (9) 
   It can be demonstrated that the coefficients a2, a1 and a0

satisfy (9) for R > 1.  Therefore the endemic equilibrium state 
would be local asymptotically stable if R > 1. 

III. NUMERICAL CALCULATIONS

We are interested in the transmission of diseases, we should 
only be interested in whether a person is infectious or not and 
is immune or not, not whether he is sick. The susceptible class 
is made up of people who have no immunity and are not 
infectious. A person infected with the dengue virus is only 
infectious during the viremia period, which lasts around three 
days. After that, the person remains sick for one or two weeks. 
Once the person becomes well, he enters into the recovery 
class with life long immunity to the virus. While the person is 
infected with the virus, he also has immunity to further 
infection by a new virus. Accordingly, a recovered person is 
the same as an infected person after the viremia period. Since 
the viremia period last three days [15], the recovery rate 
should be equal to 1/3 per day and not the inverse of the 
length of the illness. 

The values of most of the other parameters are determined 
by the real life observations. They are h = 0.0000456 per day, 
corresponding to a life expectancy of 60 years; v = 0.071 per 
day, corresponding to a mosquito mean life of 14 days; b = 
0.33, one bite providing enough blood meal for three days; a

= 0.3, s = 0.2 and v = 0.75, which were chosen arbitrarily. 
The ratio m can be adjusted to give a desired value of R. 
Setting m to be 2 and ignoring the effect of the time delay 

(EIP), we find that R = 3.50. The equilibrium state would be 
the endemic equilibrium state (0.290247, 0.000058, 
0.0000387, 0.000337) and according to the conditions 
established in the previous section, it would be a stable spiral 
node. Looking at fig. 1, we see that the trajectory in the S-E 
and S-I phase space are spiraling into the endemic equilibrium 
state. In fig.2, we find that the time evolutions of 
asymptomatic and symptomatic infectious human population 
exhibit a damped oscillation with a period of 7 years when it 
approaches the endemic equilibrium point. If we adjust the 
parameters (i.e., change m to 10) so that R = 17, the period of 
oscillation is reduced to 2.6 years. We have plotted on fig.3, 
the time evolution of the asymptomatic and symptomatic 
infectious human population when the new set of values is 
used.

Fig. 1 Spiral Trajectory in the Susceptible-Asymptomatic Plane and 
Susceptible-Symptomatic Plane. Using the numerical values given in 
the text, the trajectory spiral into the equilibrium state (S*,E*) = 
(0.290247,0.000058)  and (S*,I*) = (0.290247,0.0000387), 
respectively because the values of the parameters satisfy the Routh-
Hurwitz.
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Fig. 2 Time Evolutions of asymptomatic and symptomatic infectious 
human population. The period of oscillation is about 7 years.

 In general, small sR '  result in long periods while large 

sR '  result in short periods. A similar trend was seen in a 

study of the transmission of Plasmodium falciparum based on 
a SEIS model of transmission [16]. In that study, the period of 
the damped oscillation predicted by the model dropped from 
about 40 years to about 20 years when the set of parameter 
values which yielded a value R equal 1.3 was changed to the 
set of values which yielded a value of 3.34. For our model to 
generate oscillation of one-year period, the value of R would 
have to be much greater than the values observed in nature. In 
the next section, we will show by including a seasonal 
variation in one of the probability factors, both the annual and 
multiple year cycles can be predicted. 

Fig. 3 Time evolution of the infected human for a new set of values 
for the parameters. The change in time evolution of the infected 
population when R = 17.   The period of oscillation is reduced to 2.6 
years. 

IV. SEASONALITY IN THE INCIDENCE OF DENGUE 
HEMORRHAGIC FEVER

It was suggested long time ago, [17] that the variation in the 
extrinsic incubation period (EIP) caused by changes in the 
(lowest daily) temperature changes was the cause of the 
seasonality in the transmission of dengue disease. In this 
study, the EIP enters into the model through the dependence 
of ‘a’ (the fraction of the infected mosquitoes existing in the 
EIP) on . The fraction is given by  

      a       =
0

tv dte

                  =
v

ve1

                                                                                  (10) 
where  is the length of latent or incubation period. 
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Substituting these revised probabilities '
a  = a (1-a) and '

s

= s (1-a) and then expanding the exponential, we get

'
a      = a

2
v

v
2

11                          

                                                                                   (11) 

and '
s  = s

2
v

v
2

11

                                                                                    (12) 
As we have already point out, the dependences of '

a and
'
s on T arise because the dependence of the latent period 

depends on T. Though the dependence looks like a hyperbola, 
with  = 3 days at 320C and 14 days at 200C, we have 
modeled the variation as a sinusoidal variation, i.e.,

sin t)(1a
'
a                                     (13) 

and
sin t)(1s

'
s                                      (14) 

where  is a measure of the influence of the seasonality on the 
transmission process.         

Depending on the values of   and the other parameters, the 
basic reproduction number could remain above R = 1 
throughout the year or it could drop below 1 during part of the 
year, resulting in some complicated behaviors. To see what 
could happen, we have plotted on fig.4, a bifurcation plot 
using  as an index parameter. We see in fig. 4, the first period 
doubling bifurcation at  = 0.24, the second at 0.62, the third 
at 0.77. At  = 0.8, a chaotic band appears. As  is further 
increased, a non-chaotic interval appears at  = 0.88 and 
enters into another chaotic band as  is increased to 0.92. We 
have changed some values, which were used to get the curves 
in fig.1. The changed values are m = 11, v = 1/17, v = 1.0, a

= 0.5 and s = 0.5. These and the other values used yield a R0

= 45. In fig.5, we plot the time evolution of the asymptomatic 
and symptomatic infectious human population after a long 
passage of time. We observe that the chaotic behavior occur 
as the time is passed.  

Fig. 4 Bifurcation diagram showing the maximum value of E and I 
for the range of values of the index parameter . The top frame is a 
plot of E while the lower frame is for I.  The values of the parameters 
are given in the text. We see a series of period doubling bifurcation 
occurring at  = 0.24, 0.62 and 0.77. When  reaches 0.80, a 
bifurcation into a chaotic band occurs. A non-chaotic band emerges 
at  = 0.88 and a new chaotic band appears as  is increased to 0.92.   

Fig. 5 Long time incidence rate where a seasonal variation in the EIP 
occurs. The values of the parameters are given in the text. The value 
of the index parameter  is set at 0.90, a value putting Emax and Imax in 
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the non-chaotic band emerging from the first chaotic band. 

V. DISCUSSION

The generation of chaotic behavior by a seasonally forcing 
term should not be surprising. In addition to Ferguson et al.
[8] study on measles, Olsen et al., [18]  have also noted the 
possibility of oscillations and chaos in six childhood diseases 
in Copenhagen, Denmark. Recently, Gakkhar and Naji [19] 
have studied the effects of seasonality on a prey-predator 
model where in the absence of the seasonality, the system has 
a globally stable limit cycle. They detected an abundance of 
steady state chaotic solutions. Their results support the 
conjecture that seasons can give rise to complex population 
dynamics. In a later study, [20] they considered the cases 
where the seasonality appears in two places in their model. 
They obtained extremely rich bifurcation diagrams, which 
showed long periodic regions emerging from chaotic bands as 
various parameters in their predator-dependent functional 
response term in a Lotka-Volterra like model of a predator-
prey system.  In present study, the seasonality appears in one 
place.
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