Search results for: Nonlinear equations and systems
4810 Fail-safe Modeling of Discrete Event Systems using Petri Nets
Authors: P. Nazemzadeh, A. Dideban, M. Zareiee
Abstract:
In this paper the effect of faults in the elements and parts of discrete event systems is investigated. In the occurrence of faults, some states of the system must be changed and some of them must be forbidden. For this goal, different states of these elements are examined and a model for fail-safe behavior of each state is introduced. Replacing new models of the target elements in the preliminary model by a systematic method, leads to a fail-safe discrete event system.Keywords: Discrete event systems, Fail-safe, Petri nets, Supervisory control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16204809 The Effect of Different Nozzle Configurations on Airflow Behaviour and Yarn Quality
Abstract:
Nozzle is the main part of various spinning systems such as air-jet and Murata air vortex systems. Recently, many researchers worked on the usage of the nozzle on different spinning systems such as conventional ring and compact spinning systems. In these applications, primary purpose is to improve the yarn quality. In present study, it was produced the yarns with two different nozzle types and determined the changes in yarn properties. In order to explain the effect of the nozzle, airflow structure in the nozzle was modelled and airflow variables were determined. In numerical simulation, ANSYS 12.1 package program and Fluid Flow (CFX) analysis method was used. As distinct from the literature, Shear Stress Turbulent (SST) model is preferred. And also air pressure at the nozzle inlet was measured by electronic mass flow meter and these values were used for the simulation of the airflow. At last, the yarn was modelled and the area from where the yarn is passing was included to the numerical analysis.Keywords: Nozzle, compressed air, swirling airflow, yarn properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24564808 Information Delivery and Advanced Traffic Information Systems in Istanbul
Authors: Kevser Simsek, Rahime Gunay
Abstract:
In this paper, we focused primarily on Istanbul data that is gathered by using intelligent transportation systems (ITS), and considered the developments in traffic information delivery and future applications that are being planned for implementation. Since traffic congestion is increasing and travel times are becoming less consistent and less predictable, traffic information delivery has become a critical issue. Considering the fuel consumption and wasted time in traffic, advanced traffic information systems are becoming increasingly valuable which enables travelers to plan their trips more accurately and easily.Keywords: Data Fusion, Istanbul, ITS, Real Time Information, Traffic Information, Travel Time, Urban Mobility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20424807 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: Flood modeling, dam-break, shallow water equations, Discontinuous Galerkin scheme, MUSCL scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9474806 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement
Authors: Gheida J. Shahrour, Martin J. Russell
Abstract:
The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.
Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21744805 Metal-Dielectric Antireflection Coating on Metallic Substrate for Solar Selective Absorbers of Concentrating Solar Power Systems
Authors: Chien-Cheng Kuo
Abstract:
We design and discuss metal-dielectric antireflection coating on metallic substrates for Solar Selective Absorbers of Concentrating Solar Power Systems. The average reflectance is 8.5% at 400-3000nm and 84.4% at 3000nm-10000nm of the metal-dielectric structure.
Keywords: Concentrating solar power systems, solar thermal, solar selective absorber, absorptance, emittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18174804 A Distributed Group Mutual Exclusion Algorithm for Soft Real Time Systems
Authors: Abhishek Swaroop, Awadhesh Kumar Singh
Abstract:
The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. Several solutions of the GME problem have been proposed for message passing distributed systems. However, none of these solutions is suitable for real time distributed systems. In this paper, we propose a token-based distributed algorithms for the GME problem in soft real time distributed systems. The algorithm uses the concepts of priority queue, dynamic request set and the process state. The algorithm uses first come first serve approach in selecting the next session type between the same priority levels and satisfies the concurrent occupancy property. The algorithm allows all n processors to be inside their CS provided they request for the same session. The performance analysis and correctness proof of the algorithm has also been included in the paper.Keywords: Concurrency, Group mutual exclusion, Priority, Request set, Token.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17134803 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4934802 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm
Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula
Abstract:
This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32504801 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field
Authors: Chee Teck Phua, Gaëlle Lissorgues
Abstract:
Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.
Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26154800 Ageing Assessment of Insulation Systems by Absorption/Resorption Currents
Authors: Petru V. Notingher, Stefan Busoi, Laurentiu M. Dumitran, Cristina Stancu, Gabriel Tanasescu, Emanuel Balescu
Abstract:
Degradation of polymeric insulation systems of electrical equipments increases the space charge density and the concentration of electrical dipoles. By consequence, the maximum values and the slopes of absorption/resorption (A/R) currents can change with insulation systems ageing. In this paper, an analysis of the nature of the A/R currents and the importance of their components, especially the polarization current and the current given by the space charge, is presented. The experimental study concerns the A/R currents measurements of plane samples (made from CALMICAGLAS tapes), virgin and thermally accelerated aged. The obtained results show that the ageing process produces an increase of the values and a decrease of shapes of the A/R currents. Finally, the possibility of estimating insulations ageing state and lifetime from A/R currents measurements is discussed.Keywords: Insulation Systems, Absorption/Resorption Currents, Ageing, Lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19974799 The Effect of Natural Light on the Performance of Visible Light Communication Systems
Authors: Mahmoud Beshr, Ivan Andonovic, Moustafa H. Aly
Abstract:
Visible Light Communication (VLC) offers advantages of low energy consumption, licence free and RF interference free operation. One application area for VLC is in the provision of health centred services circumventing issues of interference with any biomedical device within the environment. VLC performamce is affected by natural light restricting systems avilability and relibility. The paper presents an analysis of the performance of VLC systems under different meteorological conditions. The evaluation considered the impact of natural light as a function of different reflection surfaces in different room sizes.
Keywords: Visible light communication, impulse reponse , performance analysis , natural light.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17084798 Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values
Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou
Abstract:
A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.
Keywords: Damage measures, Bidirectional excitation, Spectral based IMs, R/C buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23814797 Identification of Individual Objects at the Intelligent Assembly Cell
Authors: Ružarovský, Roman, Danišová, Nina, Velíšek, Karol
Abstract:
In this contribution is presented a complex design of individual objects identification in the workplace of intelligent assembly cell. Intelligent assembly cell is situated at Institute of Manufacturing Systems and Applied Mechanics and is used for pneumatic actuator assembly. Pneumatic actuator components are pneumatic roller, cover, piston and spring. Two identification objects alternatives for assembly are designed in the workplace of industrial robot. In the contribution is evaluated and selected suitable alternative for identification – 2D codes reader. The complex design of individual object identification is going out of intelligent manufacturing systems knowledge. Intelligent assembly and manufacturing systems as systems of new generation are gradually loaded in to the mechanical production, when they are removeing human operation out of production process and they also short production times.Keywords: system, cell, intelligent, mechanics, device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14474796 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.Keywords: Mathematical model, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22214795 Dense Chaos in Coupled Map Lattices
Authors: Tianxiu Lu, Peiyong Zhu
Abstract:
This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.
Keywords: Discrete spatiotemporal systems, coupled map lattices, dense δ-chaos, Li-Yorke pairs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16534794 Assessment of Performance Measures of Large-Scale Power Systems
Authors: Mohamed A. El-Kady, Badr M. Alshammari
Abstract:
In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.
Keywords: Power systems; large-scale analysis, reliability; performance assessment, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18464793 An Archetype to Sustain Knowledge Management Systems through Intranet
Authors: B. T. Sayed, Nafaâ Jabeur, M. Aref
Abstract:
Creation and maintenance of knowledge management systems has been recognized as an important research area. Consecutively lack of accurate results from knowledge management systems limits the organization to apply their knowledge management processes. This leads to a failure in getting the right information to the right people at the right time thus followed by a deficiency in decision making processes. An Intranet offers a powerful tool for communication and collaboration, presenting data and information, and the means that creates and shares knowledge, all in one easily accessible place. This paper proposes an archetype describing how a knowledge management system, with the support of intranet capabilities, could very much increase the accuracy of capturing, storing and retrieving knowledge based processes thereby increasing the efficiency of the system. This system will expect a critical mass of usage, by the users, for intranet to function as knowledge management systems. This prototype would lead to a design of an application that would impose creation and maintenance of an effective knowledge management system through intranet. The aim of this paper is to introduce an effective system to handle capture, store and distribute knowledge management in a form that may not lead to any failure which exists in most of the systems. The methodology used in the system would require all the employees, in the organization, to contribute the maximum to deliver the system to a successful arena. The system is still in its initial mode and thereby the authors are under the process to practically implement the ideas, as mentioned in the system, to produce satisfactory results.Keywords: Knowledge Management Systems, Intranet, Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19994792 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube
Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan
Abstract:
We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.Keywords: Newtonian, NUR factor, Brownian motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18604791 Simulation and Experimentation of Multibody Mechanical Systems with Clearance Revolute Joints
Authors: A.F. Haroun, S.M. Megahed
Abstract:
Clearance in the joints of multibody mechanical systems such as linkage mechanisms and robots is a main source of vibration, and noise of the whole system, and wear of the joints themselves. This clearance is an inevitable matter and cannot be eliminated, since it allows the relative motion between joint components and make them assemblage. This paper presents an experimental verification of the obtained simulation results of a slider – crank mechanism of one clearance revolute joint. The simulation results are obtained with the aid of CAD and dynamic simulation softwares, which is an effective method of simulation multibody systems with clearance joints and have many advantages. The comparison between both simulation and experimental results shows that the simulation results are so close to the experimental ones which proves the accuracy and efficiency of this method of modeling and simulation of mechanical systems with clearance joints.Keywords: CAD and dynamic simulator softwares, Clearance joints, , Experimental results, Slider – crank mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27044790 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15404789 Observer Design for Chaos Synchronization of Time-delayed Power Systems
Authors: Jui-Sheng Lin, Yi-Sung Yang, Meei-Ling Hung, Teh-Lu Liao, Jun-Juh Yan
Abstract:
The global chaos synchronization for a class of time-delayed power systems is investigated via observer-based approach. By employing the concepts of quadratic stability theory and generalized system model, a new sufficient criterion for constructing an observer is deduced. In contrast to the previous works, this paper proposes a theoretical and systematic design procedure to realize chaos synchronization for master-slave power systems. Finally, an illustrative example is given to show the applicability of the obtained scheme.
Keywords: Chaos, Synchronization, Quadratic stability theory, Observer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17214788 Database Placement on Large-Scale Systems
Authors: Cherif Haddad, Faouzi Ben Charrada
Abstract:
Large-scale systems such as Grids offer infrastructures for both data distribution and parallel processing. The use of Grid infrastructures is a more recent issue that is already impacting the Distributed Database Management System industry. In DBMS, distributed query processing has emerged as a fundamental technique for ensuring high performance in distributed databases. Database placement is particularly important in large-scale systems because it reduces communication costs and improves resource usage. In this paper, we propose a dynamic database placement policy that depends on query patterns and Grid sites capabilities. We evaluate the performance of the proposed database placement policy using simulations. The obtained results show that dynamic database placement can significantly improve the performance of distributed query processing.Keywords: Large-scale systems, Grid environment, Distributed Databases, Distributed query processing, Database placement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15004787 Two Scenarios for Ultra-Light Overhead Conveyor System in Logistics Applications
Authors: Batin Latif Aylak, Bernd Noche
Abstract:
Overhead conveyor systems are in use in many installations around the world, meeting the widest range of applications possible. Overhead conveyor systems are particularly preferred in automotive industry but also at post offices. Overhead conveyor systems must always be integrated with a logistical process by finding the best way for a cheaper material flow in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article introduces two new ultra-light overhead conveyor designs in logistics and explains their components. According to the explanation of the components, scenarios are created by means of their technical characteristics. The scenarios are visualized with the help of CAD software. After that, assumptions are made for application area. According to these assumptions scenarios are visualized. These scenarios help logistics companies achieve lower development costs as well as quicker market maturity.
Keywords: Logistics, material flow, overhead conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19964786 An Overview of Corroded Pipe Repair Techniques Using Composite Materials
Authors: K. S. Lim, S. N. A. Azraai, N. M. Noor, N. Yahaya
Abstract:
Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented.Keywords: Composite materials, pipeline, repair technique, polymers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55424785 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation
Authors: Minghui Wang, Juntao Zhang
Abstract:
An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.
Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16064784 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features
Authors: Steven Whittle, Ingrida Valiusaityte
Abstract:
Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15394783 The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology
Authors: Hassan Saberi-Nik, Mahin Golchaman
Abstract:
This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.
Keywords: Homotopy analysis method, differential-difference, nanotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19784782 Rarefactive and Compressive Solitary Waves in Warm Plasma with Positrons and Nonthermal Electrons
Authors: Hamid Reza Pakzad
Abstract:
Ion-acoustic solitary waves in a plasma with nonthermal electrons, thermal positrons and warm ions are investigated using Sagdeev-s pseudopotential technique. We study the effects of non-thermal electrons and ion temperature on solitons and show both negative and positive potential waves are possible.Keywords: Ion acoustic waves, Solitons, Nonlinear phenomena, Sagdeev potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11314781 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.
Keywords: Distillation, absorption, heat pump, Unisim Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344