%0 Journal Article
	%A Konstantinos G. Kostinakis and  Asimina M. Athanatopoulou
	%D 2015
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values
	%U https://publications.waset.org/pdf/10000094
	%V 97
	%X A key issue in seismic risk analysis within the context
of Performance-Based Earthquake Engineering is the evaluation of
the expected seismic damage of structures under a specific
earthquake ground motion. The assessment of the seismic
performance strongly depends on the choice of the seismic Intensity
Measure (IM), which quantifies the characteristics of a ground
motion that are important to the nonlinear structural response. Several
conventional IMs of ground motion have been used to estimate their
damage potential to structures. Yet, none of them has been proved to
be able to predict adequately the seismic damage. Therefore,
alternative, scalar intensity measures, which take into account not
only ground motion characteristics but also structural information
have been proposed. Some of these IMs are based on integration of
spectral values over a range of periods, in an attempt to account for
the information that the shape of the acceleration, velocity or
displacement spectrum provides. The adequacy of a number of these
IMs in predicting the structural damage of 3D R/C buildings is
investigated in the present paper. The investigated IMs, some of
which are structure specific and some are non structure-specific, are
defined via integration of spectral values. To achieve this purpose
three symmetric in plan R/C buildings are studied. The buildings are
subjected to 59 bidirectional earthquake ground motions. The two
horizontal accelerograms of each ground motion are applied along
the structural axes. The response is determined by nonlinear time
history analysis. The structural damage is expressed in terms of the
maximum interstory drift as well as the overall structural damage
index. The values of the aforementioned seismic damage measures
are correlated with seven scalar ground motion IMs. The comparative
assessment of the results revealed that the structure-specific IMs
present higher correlation with the seismic damage of the three
buildings. However, the adequacy of the IMs for estimation of the
structural damage depends on the response parameter adopted.
Furthermore, it was confirmed that the widely used spectral
acceleration at the fundamental period of the structure is a good
indicator of the expected earthquake damage level.

	%P 1 - 9