Search results for: three dimensional image generation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3734

Search results for: three dimensional image generation.

2444 Significant Role Analysis of Transmission Control Protocols in 4G Cellular Systems

Authors: Ghassan A. Abed, Bayan M. Sabbar

Abstract:

The society of 3rd Generation Partnership Project (3GPP) is completed developing Long Term Evolution Advanced (LTE-Advanced) systems as a standard 4G cellular system. This generation goals to produce conditions for a new radio-access technology geared to higher data rates, low latency, and better spectral efficiency. LTE-Advanced is an evolutionary step in the continuing development of LTE where the description in this article is based on LTE release 10. This paper provides a model of the traffic links of 4G system represented by LTE-Advanced system with the effect of the Transmission Control Protocols (TCP) and Stream Control Transmission Protocol (SCTP) in term of throughput and packet loss. Furthermore, the article presents the investigation and the analysis the behavior of SCTP and TCP variants over the 4G cellular systems. The traffic model and the scenario of the simulation developed using the network simulator NS-2 using different TCP source variants.

Keywords: LTE-Advanced, LTE, SCTP, TCP, 4G, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
2443 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup

Authors: Abbas Ali Mahmood Karwi

Abstract:

For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)

Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2442 Influence of Calcium Intake Level to Osteoporptic Vertebral bone and Degenerated Disc in Biomechanical Study

Authors: Dae Gon Woo, Ji Hyung Park, Chi Hoon Kim, Tae Woo Lee, Beob Yi Lee, Han Sung Kim

Abstract:

The aim of the present study is to analyze the generation of osteoporotic vertebral bone induced by lack of calcium during growth period and analyze its effects for disc degeneration, based on biomechanical and histomorphometrical study. Mechanical and histomorphological characteristics of lumbar vertebral bones and discs of rats with calcium free diet (CFD) were detected and tracked by using high resolution in-vivo micro-computed tomography (in-vivo micro-CT), finite element (FE) and histological analysis. Twenty female Sprague-Dawley rats (6 weeks old, approximate weight 170g) were randomly divided into two groups (CFD group: 10, NOR group: 10). The CFD group was maintained on a refmed calcium-controlled semisynthetic diet without added calcium, to induce osteoporosis. All lumbar (L 1-L6) were scanned by using in vivo micro-CT with 35i.un resolution at 0, 4, 8 weeks to track the effects of CFD on the generation of osteoporosis. The fmdings of the present study indicated that calcium insufficiency was the main factor in the generation of osteoporosis and it induced lumbar vertebral disc degeneration. This study is a valuable experiment to firstly evaluate osteoporotic vertebral bone and disc degeneration induced by lack of calcium during growth period from a biomechanical and histomorphometrical point of view.

Keywords: Calcium free diet, Disc degeneration, Osteoporosis, in-vivo micro-CT, Finite element analysis, Histology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
2441 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2440 Introducing an Image Processing Base Idea for Outdoor Children Caring

Authors: Hooman Jafarabadi

Abstract:

In this paper application of artificial intelligence for baby and children caring is studied. Then a new idea for injury prevention and safety announcement is presented by using digital image processing. The paper presents the structure of the proposed system. The system determines the possibility of the dangers for children and babies in yards, gardens and swimming pools or etc. In the presented idea, multi camera System is used and receiver videos are processed to find the hazardous areas then the entrance of children and babies in the determined hazardous areas are analyzed. In this condition the system does the programmed action capture, produce alarm or tone or send message.

Keywords: Baby and children Care and Nursing, Intelligent Control Systems for Nursing, Electronic Care and Nursing, Dangers and safety for children and babies, Motion detection, Expert danger alarm systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
2439 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao

Abstract:

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
2438 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Authors: SP. Chokkalingam, K. Komathy

Abstract:

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.

Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
2437 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196
2436 Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder

Authors: T. Li, J.Y. Zhang, W.H. Zhang, M.H. Zhu

Abstract:

A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics.

Keywords: Fluid-structure interaction, Navier-Stokes equation, Space-time finite element method, vortex-induced vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
2435 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: Harmonics, power quality, pulse width modulation, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2434 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2433 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu

Abstract:

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
2432 Distortion Estimation in Digital Image Watermarking using Genetic Programming

Authors: Labiba Gilani, Asifullah Khan, Anwar M. Mirza

Abstract:

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

Keywords: Blind Watermarking, Genetic Programming (GP), Fitness Function, Discrete Cosine Transform (DCT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
2431 Performance Evaluation of Extruded-Type Heat Sinks Used in Inverter for Solar Power Generation

Authors: Jeong Hyun Kim, Gyo Woo Lee

Abstract:

In this study, heat release performances of the three extruded-type heat sinks can be used in inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8m2. The heat release performances of E-38, E-47 and E-76 heat sinks were measured as 79.6, 81.6 and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of mass flow rates caused by different cross sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.

Keywords: Solar Inverter, Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
2430 Digital Watermarking Based on Visual Cryptography and Histogram

Authors: R. Rama Kishore, Sunesh

Abstract:

Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.

Keywords: Butterworth filter, digital watermarking, histogram, visual cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2429 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
2428 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: Rapid prototyping, wax, manufacturing processes, additive prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2427 High Performance VLSI Architecture of 2D Discrete Wavelet Transform with Scalable Lattice Structure

Authors: Juyoung Kim, Taegeun Park

Abstract:

In this paper, we propose a fully-utilized, block-based 2D DWT (discrete wavelet transform) architecture, which consists of four 1D DWT filters with two-channel QMF lattice structure. The proposed architecture requires about 2MN-3N registers to save the intermediate results for higher level decomposition, where M and N stand for the filter length and the row width of the image respectively. Furthermore, the proposed 2D DWT processes in horizontal and vertical directions simultaneously without an idle period, so that it computes the DWT for an N×N image in a period of N2(1-2-2J)/3. Compared to the existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rates. To mitigate the long critical path delay due to the cascaded lattices, we can apply the pipeline technique with four stages, while retaining 100% of hardware utilization. The proposed architecture can be applied in real-time video signal processing.

Keywords: discrete wavelet transform, VLSI architecture, QMF lattice filter, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
2426 Color View Synthesis for Animated Depth Security X-ray Imaging

Authors: O. Abusaeeda, J. P. O Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of color encoded, materials discriminating, X-ray images that exhibit animated depth in a visual display. During the image acquisition process, the requirement for a linear X-ray detector array is replaced by synthetic image. Scale Invariant Feature Transform, SIFT, in combination with material segmented morphing is employed to produce synthetic imagery. A quantitative analysis of the feature matching performance of the SIFT is presented along with a comparative study of the synthetic imagery. We show that the total number of matches produced by SIFT reduces as the angular separation between the generating views increases. This effect is accompanied by an increase in the total number of synthetic pixel errors. The trends observed are obtained from 15 different luggage items. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, view synthesis, KDE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2425 Robot Vision Application based on Complex 3D Pose Computation

Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr

Abstract:

The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.

Keywords: features correspondence, registration algorithm, robot vision, triangulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2424 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2423 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: Boundary layer profile, fire whirls, near-ground height, vortex interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
2422 Recognition and Reconstruction of Partially Occluded Objects

Authors: Michela Lecca, Stefano Messelodi

Abstract:

A new automatic system for the recognition and re¬construction of resealed and/or rotated partially occluded objects is presented. The objects to be recognized are described by 2D views and each view is occluded by several half-planes. The whole object views and their visible parts (linear cuts) are then stored in a database. To establish if a region R of an input image represents an object possibly occluded, the system generates a set of linear cuts of R and compare them with the elements in the database. Each linear cut of R is associated to the most similar database linear cut. R is recognized as an instance of the object 0 if the majority of the linear cuts of R are associated to a linear cut of views of 0. In the case of recognition, the system reconstructs the occluded part of R and determines the scale factor and the orientation in the image plane of the recognized object view. The system has been tested on two different datasets of objects, showing good performance both in terms of recognition and reconstruction accuracy.

Keywords: Occluded Object Recognition, Shape Reconstruction, Automatic Self-Adaptive Systems, Linear Cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
2421 Skyline Extraction using a Multistage Edge Filtering

Authors: Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam, Jin-Soo Kim

Abstract:

Skyline extraction in mountainous images can be used for navigation of vehicles or UAV(unmanned air vehicles), but it is very hard to extract skyline shape because of clutters like clouds, sea lines and field borders in images. We developed the edge-based skyline extraction algorithm using a proposed multistage edge filtering (MEF) technique. In this method, characteristics of clutters in the image are first defined and then the lines classified as clutters are eliminated by stages using the proposed MEF technique. After this processing, we select the last line using skyline measures among the remained lines. This proposed algorithm is robust under severe environments with clutters and has even good performance for infrared sensor images with a low resolution. We tested this proposed algorithm for images obtained in the field by an infrared camera and confirmed that the proposed algorithm produced a better performance and faster processing time than conventional algorithms.

Keywords: MEF, mountainous image, navigation, skyline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
2420 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm

Authors: M. Farshbaf, M. R. Feizi-Derakhshi

Abstract:

Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.

Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
2419 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, Josiah Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: Brewery wastewater, methane generation model, environment, anaerobic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4207
2418 Boundary Segmentation of Microcalcification using Parametric Active Contours

Authors: Abdul Kadir Jumaat, Siti Salmah Yasiran, Wan Eny Zarina Wan Abd Rahman, Aminah Abdul Malek

Abstract:

A mammography image is composed of low contrast area where the breast tissues and the breast abnormalities such as microcalcification can hardly be differentiated by the medical practitioner. This paper presents the application of active contour models (Snakes) for the segmentation of microcalcification in mammography images. Comparison on the microcalcifiation areas segmented by the Balloon Snake, Gradient Vector Flow (GVF) Snake, and Distance Snake is done against the true value of the microcalcification area. The true area value is the average microcalcification area in the original mammography image traced by the expert radiologists. From fifty images tested, the result obtained shows that the accuracy of the Balloon Snake, GVF Snake, and Distance Snake in segmenting boundaries of microcalcification are 96.01%, 95.74%, and 95.70% accuracy respectively. This implies that the Balloon Snake is a better segmentation method to locate the exact boundary of a microcalcification region.

Keywords: Balloon Snake, GVF Snake, Distance Snake, Mammogram, Microcalcifications, Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2417 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Authors: Nyeng P. Gyang

Abstract:

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
2416 Impulse Noise Reduction in Brain Magnetic Resonance Imaging Using Fuzzy Filters

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Noise contamination in a magnetic resonance (MR) image could occur during acquisition, storage, and transmission in which effective filtering is required to avoid repeating the MR procedure. In this paper, an iterative asymmetrical triangle fuzzy filter with moving average center (ATMAVi filter) is used to reduce different levels of salt and pepper noise in a brain MR image. Besides visual inspection on filtered images, the mean squared error (MSE) is used as an objective measurement. When compared with the median filter, simulation results indicate that the ATMAVi filter is effective especially for filtering a higher level noise (such as noise density = 0.45) using a smaller window size (such as 3x3) when operated iteratively or using a larger window size (such as 5x5) when operated non-iteratively.

Keywords: Brain images, Fuzzy filters, Magnetic resonance imaging, Salt and pepper noise reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
2415 Adaptation of State/Transition-Based Methods for Embedded System Testing

Authors: Abdelaziz Guerrouat, Harald Richter

Abstract:

In this paper test generation methods and appropriate fault models for testing and analysis of embedded systems described as (extended) finite state machines ((E)FSMs) are presented. Compared to simple FSMs, EFSMs specify not only the control flow but also the data flow. Thus, we define a two-level fault model to cover both aspects. The goal of this paper is to reuse well-known FSM-based test generation methods for automation of embedded system testing. These methods have been widely used in testing and validation of protocols and communicating systems. In particular, (E)FSMs-based specification and testing is more advantageous because (E)FSMs support the formal semantic of already standardised formal description techniques (FDTs) despite of their popularity in the design of hardware and software systems.

Keywords: Formal methods, testing and validation, finite state machines, formal description techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093