**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30172

##### Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder

**Authors:**
T. Li,
J.Y. Zhang,
W.H. Zhang,
M.H. Zhu

**Abstract:**

**Keywords:**
Fluid-structure interaction,
Navier-Stokes equation,
Space-time finite element method,
vortex-induced vibration.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1076498

**References:**

[1] P. Anagnostopoulos, P.W. Bearman, "Response characteristics of a vortex-excited cylinder at low Reynolds number," J. luids.Struct., vol. 6, pp. 39-50, 1992.

[2] A. Khalak, C.H.K. Williamson, "Investigation of the realative effects of mass and damping in vortex-induced vibration of a circular cylinder", J. Wind Eng. Ind. Aerodyn. vol. 69-71, pp. 341-350, 1997.

[3] D. Brika, A. Laneville, "Vortex-induced vibrations of a long flexible circular cylinder", J. Fluid Mech. vol. 250, pp. 481-508, 1993.

[4] C.H.K. Williamson, A. Roshko, "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct. vol. 2, pp. 355-381, 1988.

[5] E. Guilmineau, P. Queutey, "Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow", J. Fluids Struct. vol. 19, pp. 449-466, 2004.

[6] S. Dong, G.E. Lesoinne, "DNS of flow past a stationary and oscillating cylinder at Re=10000", J. Fluids Struct. vol. 20, pp. 519-531, 2005.

[7] H. Al-Jamal, C. Dalton, "vortex induced vibrations using large eddy simulation at a moderate Reynolds number", J. Fluids Struct. vol. 19, pp. 73-92, 2004.

[8] A. Placzek, J.F. Sigrist, A.Hamdouni, "Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations", Comuter&fluids. vol. 38, pp. 80-100, 2009.

[9] C.Y.Zhou, C.Sorm, K.Lam, "vortex induced vibrations of an elastic circular cylinder", J. Fluids Struct. vol. 13, pp. 165-189, 1999.

[10] G.W. Li, A.L. Ren, W.Q. Chen, "An ALE method for vortex-induced vibrations of an elastic circular cylinder", Acta.Aerodynamic.Asinica. vol. 22, pp. 283-288, 2004.

[11] J.R. Meneghini, P.W. Bearman, "Numerical simulation of high amplitude oscillatory flow about a circular cylinder", J. Fluids Struct. vol. 9, pp. 435-455, 1995.

[12] T.Sarkaya, "Hydrodynamic damping, flow-induced oscillations, and biharmonic response", ASME J.Offshore Mech. Arctic Eng. vol. 117, pp. 232-238, 1995.

[13] C.H.K. Williamson, R. Govardhan, "Vortex-induced vibration". Annu. Rev. Fluid Mech. vol. 36, pp. 413-455, 2004.

[14] T.E.Tezduyar , S.Mittal and S.E.Ray, "Incompressible flow computations with bilinear and linear equal-order-interpolation velocity-pressure elements", Comp. Meth. App. Mech.&Eng., vol. 95, pp 221-242, 1992.

[15] T. Li, J.Y. Zhang, W.H. Zhang. "Efficient evaluation of space-time finite element method", Journal of Southwest Jiaotong Unversity, vol. 43. pp 772-777. 2008

[16] W.M. Zhai, Vehicle-track coupling dynamics. Beijing: China Railway publishing house, 2001, pp 397-399.

[17] M. Mistsuhiro, N.Kazuhiro, M. Kisa, "Unstructured dynamic mesh for large movement and deformation", AIAA, vol. 40. pp 1-11. 2002

[18] L.P. Franca, S.L. Frey, "Stabilized finite element method: II. The incompressible Navier-Stokes equations", Comp. Meth. App. Mech. & Eng., vol. 99. pp 209-233. 1992.