Search results for: experimental evaluation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5460

Search results for: experimental evaluation

4230 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms

Authors: T. P. Singh, Vijay Gautam

Abstract:

Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cupchain type metering device was used to place each single gladiolus corm in furrow at required spacing while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.

Keywords: Coefficient of uniformity, corm spacing, gladiolus planter, mechanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
4229 Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

Authors: M. Abdulkadir, V. Hernandez-Perez, S. Sharaf, I. S. Lowndes, B. J. Azzopardi

Abstract:

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Keywords: WMS, phase distribution, silicone-oil, riser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
4228 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
4227 Design and Fabrication of a Parabolic Trough Collector and Experimental Investigation of Wind Impact on Direct Steam Production in Tehran

Authors: H. Akhbari, M. Bidi, A. Bakhtiari, S. Eslami

Abstract:

The present paper aims to the techno-economic feasibility of enhancing low-cost parabolic trough collectors in the light of developing the use of solar energy in under-developed regions where expensive high-tech solar devices cannot be afforded. Moreover, the collector is aimed to produce steam so that its performance is based on heat which can be discovered. In this regard, the manufacturing process and the detailed design models in Solidworks software are elaborated. Furthermore, the colletor’s material is chosen in a way to minimize the costs. Finally, to assess the performance of the built collector, it is installed in the site of Shahid Beheshti University, Tehran, and the values of the effective peripheral parameters, such as temperature, wind speed, and most importantly, solar irradiance, are recorded simultaneously in June. According to the results obtained, the manufactured collector with the aperture area of 2 m2 (1×2 m) is capable of producing 350 ml.h-1 steam. Also, the wind influence is comprehensively investigated in this paper. As a case in point, it was measured that as the wind speed maximized to 9.77 km/h, the amount of steam outlet is minimized to 580 ml.

Keywords: Direct steam production, design and fabrication parabolic trough collector, solar water heater, wind impact, experimental investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
4226 Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Authors: Wei Hua Ho

Abstract:

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

Keywords: Jet Engine Test Cell, Unsteady flow, Inlet Vortex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
4225 Role of Lemna minor Lin. in Treating the Textile Industry Wastewater

Authors: D. Sivakumar

Abstract:

Textile industry processes are among the most environmentally unfriendly industrial processes; because, they produce color wastewater that is heavily polluted the environment. Therefore, textile industry wastewater has to be treated before being discharged into the environment. In this study, experiments were conducted for different process parameters like nutrient dosage and dilution ratio against the pH and contact time to remove COD and color in a textile industrial wastewater using aquatic macrophytes Lemna minor L. The experimental results showed that the maximum percentage reduction of COD and color in a textile industry wastewater by Lemna minor L. was obtained at an optimum nutrient dosage of 50g, dilution ratio of 8, pH of 8 and contact time of 4 days. Similarly, the results of validation experiments showed that the experiments were able to reproduce the obtained optimum process parameters. The maximum removal percentage of color in an aqueous solution (86.35%) is higher than the removal of color in a textile industry wastewater (82.85). Further, the first order kinetic model was fitted well with the experimental data of this present study. Finally, this study concluded that Lemna minor L. may be used for removing all types of parameters in any type of textile industry wastewater.

Keywords: Aquatic Macrophyte, Process Parameters, Textile Industry Wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
4224 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient

Authors: Sobhy Fathy A. Hashesh

Abstract:

This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: ANPT, Flipped Classroom, 5Es learning Model, Kagan structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
4223 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Keywords: Axial force ratio, coupled analysis, fire, reinforced concrete wall, temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
4222 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
4221 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: Toolpath, part program, optimization, pocket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
4220 Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

Authors: Won-Pil Park, Seung-Kwan Cho, Jai-Young Ko, Anders Kristensson, S.T.S. Al-Hassani, Han-Sung Kim, Dohyung Lim

Abstract:

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Keywords: Finite Element Analysis, Mechanical Characteristic, Transient Non-uniform Balloon-Stent Expansion, Vascular Stent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
4219 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network

Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo

Abstract:

Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.

Keywords: Power quality, remote monitoring, distributed automation system, economic evaluation, LV network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
4218 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis

Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.

Keywords: Genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
4217 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna

Abstract:

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
4216 A Methodology for the Synthesis of Multi-Processors

Authors: Hamid Yasinian

Abstract:

Random epistemologies and hash tables have garnered minimal interest from both security experts and experts in the last several years. In fact, few information theorists would disagree with the evaluation of expert systems. In our research, we discover how flip-flop gates can be applied to the study of superpages. Though such a hypothesis at first glance seems perverse, it is derived from known results.

Keywords: Synthesis, Multi-Processors, Interactive Model, Moor’s Law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
4215 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: Permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
4214 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
4213 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
4212 Wind Power Assessment for Turkey and Evaluation by APLUS Code

Authors: Ibrahim H. Kilic, A. B. Tugrul

Abstract:

Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.

Keywords: APLUS, energy policy, renewable energy, wind power, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
4211 Evaluation of State of the Art IDS Message Exchange Protocols

Authors: Robert Koch, Mario Golling, Gabi Dreo

Abstract:

During the last couple of years, the degree of dependence on IT systems has reached a dimension nobody imagined to be possible 10 years ago. The increased usage of mobile devices (e.g., smart phones), wireless sensor networks and embedded devices (Internet of Things) are only some examples of the dependency of modern societies on cyber space. At the same time, the complexity of IT applications, e.g., because of the increasing use of cloud computing, is rising continuously. Along with this, the threats to IT security have increased both quantitatively and qualitatively, as recent examples like STUXNET or the supposed cyber attack on Illinois water system are proofing impressively. Once isolated control systems are nowadays often publicly available - a fact that has never been intended by the developers. Threats to IT systems don’t care about areas of responsibility. Especially with regard to Cyber Warfare, IT threats are no longer limited to company or industry boundaries, administrative jurisdictions or state boundaries. One of the important countermeasures is increased cooperation among the participants especially in the field of Cyber Defence. Besides political and legal challenges, there are technical ones as well. A better, at least partially automated exchange of information is essential to (i) enable sophisticated situational awareness and to (ii) counter the attacker in a coordinated way. Therefore, this publication performs an evaluation of state of the art Intrusion Detection Message Exchange protocols in order to guarantee a secure information exchange between different entities.

Keywords: Cyber Defence, Cyber Warfare, Intrusion Detection Information Exchange, Early Warning Systems, Joint Intrusion Detection, Cyber Conflict

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
4210 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures

Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour

Abstract:

In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5mm to 6.3mm seems to be higher than that when increasing it from 6.3mm to 8mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.

Keywords: Anchored bolted connection, Extended Hollobolt, Column faces bending and concrete filled hollow sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
4209 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
4208 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-by-Wire ECU Development

Authors: A. Ukaew, C. Chauypen

Abstract:

Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual driveby- wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.

Keywords: Drive-by-wire ECU, in-the-loop testing, modelbased design, real-time embedded system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
4207 A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool

Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi

Abstract:

Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.

Keywords: CNC-machine, Glass milling, Grinding, Surface roughness, Cutting force, Fuzzy logic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
4206 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
4205 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum

Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau

Abstract:

Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).

Keywords: Thermography, orofacial biomechanics, skin temperature, ice therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
4204 Study of Natural Patterns on Digital Image Correlation Using Simulation Method

Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish

Abstract:

Digital image correlation (DIC) is a contactless fullfield displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.

Keywords: Digital image correlation (DIC), Deformation simulation, Natural pattern, Subset size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
4203 Use of GIS for the Performance Evaluation of Canal Irrigation System in Rice Wheat Cropping Zone

Authors: Umm-e- Kalsoom, M. Arshad, Sadia Iqbal, M. Usman, M. Adnan

Abstract:

The research study evaluated the performance of irrigation system by using special scientific tools like Remote Sensing and GIS technology, so that proper measurements could be taken for the sustainable agriculture and water management. Different performance evaluation parameters had been calculated for the purposed data was gathered from field investigation and different government and private organizations. According to the calculations, organic matter ranges from 0.19% (low value) to 0.76% (high value). In flat irrigation system for wheat yield ranges from 3347.16 to 5260.39 kg/ha, while the total water applied to wheat crop ranges from 252.94 to 279.19 mm and WUE ranges from 13.07 to 18.37 kg/ha/mm. For rice yield ranges from 3347.47 to 5433.07 kg/ha with total water supplied to rice crop ranges from 764.71 to 978.15 mm and WUE ranges from 3.49 to 5.71 kg/ha/mm. Similarly, in raised bed system wheat yield ranges from 4569.13 to 6008.60 kg/ha, total water supplied ranges from 158.87 to 185.09 mm and WUE ranges from 27.20 to 33.54 kg/ha/mm while in rice crop, yield ranges from 5285.04 to 6716.69 kg/ha, total water supplied ranges from 600.72 to 755.06 mm and WUE ranges from 6.41 to 10.05 kg/ha/mm. Almost 51.3% water saving is observed in bed irrigation system as compared to flat system. Less water supplied to beds is more affective as its WUE value is higher than flat system where more water is supplied in both the seasons. Similarly, RWS values show that maximum water deficit while minimum area is getting adequate water supply. Greater yield is recorded in bed system as plant per square meter is more in bed system in comparison of flat system Thus, the integration of GIS tools to regularly compute performance indices could provide irrigation managers with the means for managing efficiently the irrigation system.

Keywords: Field survey, Relative Water Supply (RWS), Remote sensing maps, Water Use Efficiency (WUE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
4202 Modal Analysis of Machine Tool Column Using Finite Element Method

Authors: Migbar Assefa

Abstract:

The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.

Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5037
4201 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir

Abstract:

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775