WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001429,
	  title     = {Implementation of Conceptual Real-Time Embedded Functional Design via Drive-by-Wire ECU Development},
	  author    = {A. Ukaew and  C. Chauypen},
	  country	= {},
	  institution	= {},
	  abstract     = {Design concepts of real-time embedded system can be
realized initially by introducing novel design approaches. In this
literature, model based design approach and in-the-loop testing were
employed early in the conceptual and preliminary phase to formulate
design requirements and perform quick real-time verification. The
design and analysis methodology includes simulation analysis, model
based testing, and in-the-loop testing. The design of conceptual driveby-
wire, or DBW, algorithm for electronic control unit, or ECU, was
presented to demonstrate the conceptual design process, analysis, and
functionality evaluation. The concepts of DBW ECU function can be
implemented in the vehicle system to improve electric vehicle, or EV,
conversion drivability. However, within a new development process,
conceptual ECU functions and parameters are needed to be evaluated.
As a result, the testing system was employed to support conceptual
DBW ECU functions evaluation. For the current setup, the system
components were consisted of actual DBW ECU hardware, electric
vehicle models, and control area network or CAN protocol. The
vehicle models and CAN bus interface were both implemented as
real-time applications where ECU and CAN protocol functionality
were verified according to the design requirements. The proposed
system could potentially benefit in performing rapid real-time
analysis of design parameters for conceptual system or software
algorithm development.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {6},
	  year      = {2015},
	  pages     = {940 - 946},
	  ee        = {https://publications.waset.org/pdf/10001429},
	  url   	= {https://publications.waset.org/vol/102},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 102, 2015},
	}