Search results for: affective teaching and learning
1075 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade
Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim
Abstract:
Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.
Keywords: Building envelope, machine learning, perforated metal, multi-factor optimization, façade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12241074 Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation
Authors: Chatcai Tangsri, Onjaree Na-Takuatoong
Abstract:
This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from university that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.
Keywords: Knowledge system, Visually impaired students, Higher education, Knowledge management enable technology, Synchronous/Asynchronous knowledge access, Synchronous/Asynchronous knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501073 To Design Holistic Health Service Systems on the Internet
Authors: Åsa Smedberg
Abstract:
There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.
Keywords: Learning, Ask the Expert, online community, healthcare, holistic, overweight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14291072 Echo State Networks for Arabic Phoneme Recognition
Authors: Nadia Hmad, Tony Allen
Abstract:
This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.
Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24091071 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool
Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope
Abstract:
In educational technology, the idea of innovation is usually tethered to contemporary technological inventions and emerging technologies. Yet, using long-known technologies in ways that are pedagogically or experimentially new can reposition them as emerging educational technologies. In this study we explore how a subtle pivot in pedagogical thinking led to an innovative education technology. We describe the design and implementation of an online writing tool that scaffolds students in the evaluation of their own informational texts. We think about how pathways to innovation can emerge from pivots, namely a leveraging of longstanding practices in novel ways has the potential to cultivate new opportunities for learning. We first unpack Infowriter in terms of its design, then we describe some results of a study in which we implemented an intervention which included our designed application.Keywords: Design, innovation, learning, technology, writing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16931070 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261069 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901068 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.
Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41061067 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm
Authors: Nameer N. EL-Emam
Abstract:
In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891066 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients
Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan
Abstract:
This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.
Keywords: Empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12391065 On the Continuous Service of Distributed e-Learning System
Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Abstract:
In this paper, backup and recovery technique for Peer to Peer applications, such as a distributed asynchronous Web-Based Training system that we have previously proposed. In order to improve the scalability and robustness of this system, all contents and function are realized on mobile agents. These agents are distributed to computers, and they can obtain using a Peer to Peer network that modified Content-Addressable Network. In the proposed system, although entire services do not become impossible even if some computers break down, the problem that contents disappear occurs with an agent-s disappearance. As a solution for this issue, backups of agents are distributed to computers. If a failure of a computer is detected, other computers will continue service using backups of the agents belonged to the computer.Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591064 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung
Authors: Yi-Ju Lee
Abstract:
This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.Keywords: Creative tourism, Sense of achievement, Unique learning, Interaction with instructors, Folk art.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051063 Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language Other than English
Authors: S. Figueiredo, M. Alves Martins, C. Silva, C. Simões
Abstract:
This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers’ representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.Keywords: Second language, writing assessment, home language, immigrant students, Portuguese language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581062 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721061 Markov Game Controller Design Algorithms
Authors: Rajneesh Sharma, M. Gopal
Abstract:
Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.Keywords: Reinforcement learning, Markov Decision Process, Matrix Games, Markov Games, Smooth Fictitious play, Controller, Inverted Pendulum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211060 From Mother Tongue Education to Multilingual Higher Education
Authors: Mario R. Acevedo Amaya, Fernanda M. Martinez Reyes
Abstract:
Through the time, the higher education has changed the learning system since mother tongue to bilingual, and in this new century has been coming develop a multilingual education. All as part of globalization process of the countries and the education. Nevertheless, this change only has been effectively in countries of the first world, the rest have been lagging. Therefore, these countries require strengthen their higher education systems through models that give way to multilingual and bilingual education. In this way, shows a new model adapted from a systemic form to allow a higher bilingual and multilingual education in Latin America. This systematization aims to increase the skills and competencies student’s, decrease the time learning of a second tongue, add to multilingualism in the American Latin Universities, also, contribute to position the region´s countries in a better global status, and stimulate the development of new research in this area.Keywords: Bilingual Education, Higher Education, Multilingual Education, Multilingual Education Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331059 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27311058 The Traits That Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus
Authors: D. Vlachopoulos, G. Tsokkas
Abstract:
Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.
Keywords: Distance education students, successful student performance, European University Cyprus, common traits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041057 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351056 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management
Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra
Abstract:
This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.Keywords: Experience report, accessible systems, software testing, testing process, systems, e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121055 Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)
Authors: Ramin Javadzadeh, Emad Javadzadeh
Abstract:
Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.
Keywords: CLA-AIS, failure surface, optimization methods, rock slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111054 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: Cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591053 The Effect of Computer-Mediated vs. Face-to-Face Instruction on L2 Pragmatics: A Meta-Analysis
Authors: Marziyeh Yousefi, Hossein Nassaji
Abstract:
This paper reports the results of a meta-analysis of studies on the effects of instruction mode on learning second language pragmatics during the last decade (from 2006 to 2016). After establishing related inclusion/ exclusion criteria, 39 published studies were retrieved and included in the present meta-analysis. Studies were later coded for face-to-face and computer-assisted mode of instruction. Statistical procedures were applied to obtain effect sizes. It was found that Computer-Assisted-Language-Learning studies generated larger effects than Face-to-Face instruction.Keywords: Meta-analysis, effect size, pragmatics, computer-assisted language learnin, face-to-face instruction, comprehensive meta-analysis software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7821052 A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering
Authors: Michael Johnson, Vincenzo Oliveri
Abstract:
This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed.
Keywords: Problem-Based Learning, Online PBL, Electronic Engineering, Aeronautical Engineering, Interdisciplinary Project, CanSat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4701051 A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)
Authors: Rekha Kandwal, Kamal K.Bharadwaj
Abstract:
Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.
Keywords: Censored production rules, cumulative learning, data mining, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851050 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori, Rina Suzuki
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.
Keywords: Catastrophic forgetting, dual-network, temporal sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14241049 On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE
Authors: Tholokuhle T. Ntshakala, Seraphin D. Eyono Obono
Abstract:
Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICTs that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICTs for physical education.
Keywords: Human Behavior, ICT Awareness, Physical Education, Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551048 Revitalisation of Indigenous Food in Africa through Print and Electronic Media
Authors: Adebisi. Elizabeth, Banjo
Abstract:
Language and culture are interwoven that they cannot be separated, for the knowledge of a language cannot be complete without having the culture of the language. Indigenous food is a cultural aspect of any language that is expected to be acquired by all the speakers of the language. Indigenous food is known to be vital right from early years, which is also attributed to the healthy living of the ancient people. However it is discovered that the indigenous food is almost being replaced by fast food products such as Indomie noodles, Spaghetti and Macaroni to the extent that majority of the young folks prefer the eating of the fast foods and cannot prepare the indigenous foods which are good for growth and healthy living of people. Therefore, there is need to revitalize and re-educate people on the indigenous food which is an aspect of inter-cultural education of any language to prevent it from being forgotten or neglected.
African foods are many, but this study focused on Nigerian food using some Yoruba dishes as a case study. Examples of Yoruba dishes are pounded yam and melon with vegetable and dried fish soup, beans pudding (moin moin) and pap (eko), water yam pudding with fish and meat (ikokore) and many more. The ingredients needed for the preparation of these indigenous foods contain some basic food nutrients which will be analyzed and their nutritional importance to human bodies will also be discussed.
The process of re- awakening the education of indigenous food to the present and up-coming generation should be via print and electronic media in form of advertisements on posters, billboards, calendars and in rhymes on television programs, radio presentations, video tapes and CD–ROM apart from classroom teaching and learning. Indigenous food is a panacea to healthy living and longevity, a prevention of diseases and a means of accelerated healing of the body through natural foods.
Keywords: Indigenous food, print and electronic media, nutritional values, re-awakening education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941047 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.
Keywords: Deep learning network, smart metering, water end use, water-energy data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631046 The Prospects and Challenges of Open Learning and Distance Education in Malawi
Authors: Andrew Chimpololo
Abstract:
Open and distance learning is a fairly new concept in Malawi. The major public provider, the Malawi College of Distance Education, rolled out its activities only about 40 years ago. Over the years, the demand for distance education has tremendously increased. The present government has displayed positive political will to uplift ODL as outlined in the Malawi Growth and Development Strategy as well as the National Education Sector Plan. A growing national interest in education coupled with political stability and a booming ICT industry also raise hope for success. However, a fragile economy with a GNI per capita of -US$ 200 over the last decade, poor public funding, erratic power supply and lack of expertise put strain on efforts towards the promotion of ODL initiatives. Despite the challenges, the nation appears determined to go flat out and explore all possible avenues that could revolutionise education access and equity through ODL.Keywords: challenges, distance education, Malawi, openlearning, prospects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3722