
 
 

 

 
Abstract—The main aim of a communication system is to 

achieve maximum performance. In Cognitive Radio any user or 
transceiver has ability to sense best suitable channel, while channel is 
not in use. It means an unlicensed user can share the spectrum of a 
licensed user without any interference. Though, the spectrum sensing 
consumes a large amount of energy and it can reduce by applying 
various artificial intelligent methods for determining proper spectrum 
holes. It also increases the efficiency of Cognitive Radio Network 
(CRN). In this survey paper we discuss the use of different learning 
models and implementation of Artificial Neural Network (ANN) to 
increase the learning and decision making capacity of CRN without 
affecting bandwidth, cost and signal rate. 
 

Keywords—Artificial Neural Network, Cognitive Radio, 
Cognitive Radio Networks, Back Propagation, Spectrum Sensing. 

I. INTRODUCTION 

N evolution of communication system the necessity of 
higher data rate is major concern because at present time 

user not only use voice services but also use video and data 
services. The electromagnetic radio frequency spectrum has its 
own limitations and it is tightly regulated and allocated within 
all countries of the world by International Telecommunication 
Union (ITU). In any country, local government can provide 
spectrum license for service providers. Radio spectrum 
allocation is categorized as licensed and unlicensed band. In 
Licensed band frequency can used or transmit only in 
allocated band that they purchased, while unlicensed band can 
use any frequency. Thus to use optimum frequency, 
communication system can use different techniques like 
modulation, attenuation, coding. Many research shows that in 
fixed spectrum allocation some frequencies are used heavily 
while some frequencies are not used or partially used. Unused 
frequency is also known as spectrum hole. The spectrum holes 
are belongs to licensed user but for some instants these holes 
are not used by user. The cognitive radio is a device that 
senses these spectrum holes and make available for unlicensed 
user. In CR licensed user also known as primary user and 
unlicensed user as secondary user. The major characteristics of 
CR is to ability to sense, learn, measure, be aware about 
communication channel and its availability i.e. spectrum 
availability and power.  

The concept of Cognitive Radio (CR) is first introduced by 
Mitola in his PhD work [1]. He proposed an idea to enhance 
effectiveness of wireless communication by make aware to its 
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radio units to utilize its surrounding sources i.e. 
communication channel. Haykin [2] introduce signal 
processing and communications realization of CR technology. 
Cabric, Mishra and Brodersen and also proposed some 
fundamental issues about CR [3]. All these early contributions 
introduce spectrum sensing to detect vacant spectrum band 
and utilize these it.  

Artificial Intelligent play an important role in wireless 
communication specially to sense the surrounding 
environment. It has ability to learn things and adapt itself 
according to input and provide output. Cognitive Radio 
Networks fulfill these requirements. Thus, if we apply ANN 
on CRN then we achieve maximum performance and 
maximum utilization of wireless communication.  

Human brain learns new things every day, by this behavior 
he gain knowledge and become more and more intelligent and 
smarter. ANN adopted the property of human brain and 
provides solution for non-liner and probabilistic problems. 
Similarly, if we want CR to work more intelligently then we 
should enable CR to learn. Various learning techniques of 
ANN enable CR to learn. Meanwhile all intelligent algorithms 
are not useful for CR. Some learning algorithms can be used 
to predict communication performance but genetic algorithms 
are suitable for transceiver’s parameters. Thus, combination of 
different kind of intelligent algorithms is better for CR. Some 
of them are ANN, ANFIS, reinforcement learning genetic 
algorithms, and hidden Markov models reinforcement 
algorithms. In this survey paper we discuss various learning 
techniques of ANN that implemented on CRN. 

This survey paper is organized as follows: sections II 
describes and compare different learning models for cognitive 
radio network. Section III explains ANN and its learning 
algorithms. We mainly discuss the Back propagation (BP) 
algorithm and Feed Forward Neural Network (FFNN). Section 
IV discusses the various ANN that implemented on CRN and 
provide a comparison between them. Finally we conclude the 
paper in Section V. 

II. DEFERENT LEARNING MODELS FOR COGNITIVE RADIO 

NETWORKS  

Cognitive radio has special ability of learning about its 
surrounding communication system and remembers the 
information like knowledge. According to situation if CR 
needs help from previous knowledge then it can retrieve 
information. It is also useful to make an accurate decision.  

In CRN for spectrum sensing, spectrum behavior, spectrum 
selection, performance and other different parameters, 
different learning models are implemented. Some of them are 
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Point sense the information and inform to cluster head. The 
data fusion in channel sensing is similar to pattern recognition 
problem thus ART-2 is more suitable for CRN. ART-2 has 
ability to self-organize the input and creates resonance state 
and associate with categories. These categories follow specific 
prototype patterns. Neural network accept all these patterns of 
same category as an input and train the system. After the 
training we select the most significant node. If network not 
provide any node then it is assumed that MP provide wrong 
information. Zhu et al. [16] compare their simulation results 
with Bayesian Draft Protocol and found that their network 
provides better accuracy. 

D. Proposal 4 

Tumuluru et al. [17] proposed a spectrum predictor for 
cognitive radio using Multilayer Perceptron (MLP) Neural 
Network. This MLP has special characteristic that it does not 
require previous knowledge or data of traffic characteristics of 
licensed user. Neural network creates mapping function 
between input data and output data. This data is in the form of 
binary which is obtained by channel sensing during different 
time. When licensed user is active then channel status is busy 
and when user is absent then channel is idle. In ANN we 
represent this situation as a two-class problem. Binary 
representation for busy and idle condition is 1 and -1 
respectively. MLP predictor uses the BP algorithm. For 
training channel sensing data is provided as input. Neural 
network maps input data with output data. In this problem 
output data is 1/-1. We have desired output and neural network 
provides desired output. Difference between desired and 
estimated output provides error. The less error provides the 
better results and accuracy i.e. prediction. Tumuluru et al. 
compare their results with HMM based spectrum prediction 
scheme [18], [19], which does not provide details about length 
of observation sequence and number of states. Spectrum 

prediction CRN save the sensing energy and improve 
spectrum utilization of communication channel. 

E. Proposal 5 

Cai et al. [20] proposed an Incremental Self-Organizing 
Map integrated with neural Network (ISOM-HNN) for signal 
classification in CRN. This approach detects unknown radio 
signals in wide communication network or channel. ISOM 
improves real time learning performance and HNN improves 
learning along with prediction accuracy. ISOM provide 
incremental learning to SOM. ISOM update the weight of 
neurons by calculating the total number of inputs in neurons. 
As number of input is increased the magnitude of weight is 
also increases. By this method ISOM grows dynamically and 
detect the unknown signals continuously. For learning, 
prediction and association of HNN, the modified Hebbian 
learning algorithm is proposed. ISOM-HNN discards the 
dependency of data dimensionality and it enhances capacity of 
CRN to identify authorized and unauthorized radio signal in 
communication spectrum. 

F. Proposal 6 

Tang et al. [21] propose an Artificial Neural Network for 
spectrum sensing of CRN under low Signal-to-Noise Ratio 
(SNR). Primary user has Amplitude Modulation (AM) signals. 
Secondary user perform ANN based detection method to sense 
whether the primary user occupy the channel or not. The 
attributes of four input neurons are energy and three 
cyclostationary values. At the training phase, weights and 
threshold of each neuron are updated at each-iteration. 
Training followed the feature abstraction. Additive White 
Gaussian Noise (AWGN) is added to AM signals to introduce 
SNR in network. Proposed ANN has advantages of 
cyclostationary values detection and energy detection. This 
ANN has less computational complexity and reduces the 
interference in CRN. 

 
TABLE II 

 PERFORMANCE OF ARTIFICIAL NETWORK IN COGNITIVE RADIO NETWORK 
Authors Uses for CRN Input Attributes Output 

Attributes 
Activation 
Function 

Layers Consideratio
ns 

Baldo and 
Zorzi [12] 

Performance 
characterisation of 
component 

Received Frames 
Idle Time 
SNR 

Throughput 
ReliabilityDelay 

Sigmoid function  Multilayer 
forward NN 

Number of 
users in CRN 

Zhang and 
Xie [14] 

Decision Making  ARQ, FCC, Signal Rate, Bandwidth, 
Modulation, Encryption, Cost, Owner 

Mean Square 
Error (MSE) 

Sigmoid 
Function  

Multilayer (ML) 
BP NN 

System 
Chromosomes 

Zhu et al. 
[16] 

Channel Sensing Prototype Patterns Mean Square 
Node  

Poison 
Distribution 

ART-2 NN Data Fusion  
 

Tumuluru et 
al. [17] 

Spectrum Prediction  Traffic Characteristics  Two classes (1/-1) 
MSE 

Sigmoid function  MLBP NN Prior 
Knowledge  

Cai et al. [20] Signal Classification Channel bandwidth, 
Dwelling time 

Mohalanobis 
distance 

Incremental 
Function 

ISOM-HNN Data 
dimensionality 

Tang et al. 
[21] 

Spectrum Sensing Energy Cyclostationary values Cyclic Spectrum Threshold 
function  

BPNN SNR 
AWGN 

Shamsi et al. 
[22] 

Predictive Modelling  
Multi secondary user 

Traffic Distribution 
 

MSE Hyperbolic 
function 

Feedforword NN 
BPNN 

Delay Line 

Tan et al. [23] Frequency Allocation  Frequency  MSE Sigmoid 
Function 

BPNN Weight at 
different time  

Zhang et al. 
[24] 

Cooperative spectrum 
sensing  

Probability forecast of Fusion Centre  MSE Threshold 
function 

BPNN AWGN 
SNR 

Gatla et al. 
[25] 

Performance 
(Throughput, Data 
Rate) 

Link quality  
Signal Strength  

MSE Sigmoid 
Function 

Focused time 
delay Neural 
Network  

FTDNN 
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G. Proposal 7 

Shamsi et al. [22] design Time Delay Neural Network 
(TDNN) and Recurrent Neural Network (RNN) for predictive 
modeling and multi secondary user scenario in CRN. It 
improves the spectrum utilization. It helps the secondary user 
to choose best possible and available communication channel. 
The error for prediction is almost zero in these methods. 
Secondary user divide licensed channel in to small time slots. 
For each time slot secondary user sense the spectrum holes. In 
ideal condition secondary user sense the vacant channel 
correctly. TDNN is a Feed Forward network and a delay line 
is applied to its input. RNN is back propagation network and it 
has feedback connection from output node to input node. This 
feedback generates a pattern for each time instance. Primary 
user traffic distribution as a binary sequence work as an Input 
for training of TDNN and RNN. Two data sets are generated 
by these networks by using feedback pattern and binary 
sequence. For learning of TDNN and RNN, BP algorithm is 
used. After successful training, MSE is calculated as 
performance of CRN. Secondary user uses the channel status 
predictor with maximum priority. Shamsi et al. [22] also 
explain the spectrum resource security. These networks help to 
secondary user to sense the spectrum holes and make them to 
accessible. It also provides accurate activity of primary user. 
Thus it also reduces the interference. TDNN and RNN both 
have highest prediction probability. 

H. Proposal 8 

Tan et al. [23] propose an ANN to solve a frequency 
allocation problem in CR. In CR primary user has license or 
right to use frequency any time. On the other hand, secondary 
user only use at particular time. User has different weight in 
CR. Thus, two hypotheses are adopted. Firstly, multi user with 
different weight at same time and secondly, single user with 
different time. BPNN train the weight of each user for same 
time instant and different time. The output provides decrease 
distance between actual output and expected output. In CRN, 
demand of frequency is changes over the time. Thus, user has 
to keep in touch with the environment. The network designed 
by Tan et al. provides a faster and accuracy toward frequency 
allocation due to less complexity in computation. 

I. Proposal 9 

Zhang et al. [24] proposed an ANN for cooperative 
spectrum sensing of CRN. Fusion centre is used to find the 
probability of weights. Secondary User/Unit (SU) sense for 
primary user/unit (PU) and send the information to fusion 
centre. Fusion centre is used to find the probability of weights. 
And it is work as an input of ANN. Spectrum sensing is 
divided into three hypotheses in this model. These are 
spectrum sensing of individual SU, communication between 
SU and fusion centre, and fusion scheme. For training phase 
SU provide the sensing information as input and after the 
training SU stop to work. Now fusion centre also stop to send 
reference signal to PU. Thus PU gets knowledge about 
probability of SU weight. As SU and PU are both involve in 
spectrum sensing of CRN thus it is known as cooperative 

spectrum sensing. This model provides the excellent 
performance of probability and detection probability.  

J. Proposal 10 

Gatla et al. [25] proposed a learning model using neural 
network to calculate performance of CRN and its parameters 
like throughput and data rate. This network uses the non-linear 
transfer function to map linear as well as non-linear input and 
output. The linear output has two classes and generally 
represented by 1 and -1. Preprocessing is applied to normalize 
the data. Focused Time-Delay Neural Network (FTDNN) 
provides delay lines in the input. To update the weight and the 
bias, LM algorithm is used. To measure the data rate, bit rate 
and signal strength works as an input of NN. This model 
explains the relation between signal strength and data rate of 
CRN. 

V. CONCLUSION 

In present scenario, wireless network spectrum resources 
are backbone of communication across the world and it has 
potential to rapid increase. There are a lot of possibilities in 
the research field of CRN especially in aeronautical and 
satellite communication systems. In this survey paper we 
discuss various implementation presented by different authors. 
From the given proposals we conclude that BP algorithm is 
best suitable algorithm for ANN. Sigmoid function provides 
best result in ANN. And most popular method to describe 
output parameter for ANN is Mean Square Error (MSE). The 
performance of proposal presented by Shamsi et al. [22], give 
the most significant and accurate results. The accuracy of the 
network is higher than other proposal that describe above. The 
MSE for network is almost zero. In general the proposal of 
Shamsi et al. [22] is best among the other proposals.  

The main importance of CRN is to sense the spectrum or 
prediction. If CRN has effective sensing power than then it 
can use all the resources of communication channel. ANN has 
very good ability for recognition and prediction of physical 
and logical attributes. These abilities of ANN are implemented 
on CRN to achieve maximum performance of CRN. It also 
increases the accuracy and effectiveness of CRN. 
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